题意:
解法:
首先要想到一个重要结论:
对于位置i,如果我们想要a[i]为最大值所在位置,我们只需要选择包含i的区间即可.
对于位置i能取到的最大值,一个想法是对所有包含i的区间跑一边01背包。
转移方程: 对于值为v的区间, 枚举i,令dp[i+v]|=dp[i].
一次背包的复杂度为O(q*n).
由于该dp可以按区间转移,所以可以用bitset优化为O(q*n/w),
其中w为计算机一个字节的位数, 可以简单认为是32.
但对于n个位置都要计算一遍,总复杂度为O(n^2*q/w), 需要优化.
复杂度的瓶颈在于,对于某个区间操作集合S的交集[l,r],需要对(r-l+1)个位置都做同样的dp转移,导致了重复计算。
如果这(r-l+1)个位置,能够复用同一轮bitset的结果,那么复杂度就能减少了(r-l+1)倍.
这里要引入线段树分治,线段树分治的做法是,对于区间[l,r,v],
以laz线段树的方式将区间[l,r,v]更新到在[l,r]在线段树的区间节点上.
这部分每次更新的复杂度是O(log), q次更新的总复杂度为O(q*log).
在所有更新跑完后,我们遍历线段树的每个区间节点,
每遍历到一个区间节点就把laz标记向下更新.
这样的话,每个区间节点就只会被更新一次,
相对于左右两个子节点复用了区间节点的bitset转移结果.
标记下放结束后,我们最后对叶子节点的bitset或起来就是答案.
标记下放需要遍历整个线段树,复杂度为节点数量2*n, 即O(n).
同时标记下放需要维护下放过程中的bitset, bitset更新的复杂度为O(n/w)
因此总复杂度为O(n^2/w)
Code:
#include <bits/stdc++.h>
using namespace std;
#define X first
#define Y second
#define int long long
#define PI pair<int, int>
const int maxm=1e4+5;
const int mod=998244353;
vector<int>laz[maxm<<2];
bitset<maxm>ans;
int n,q;
void update(int st,int ed,int v,int l,int r,int node) {
if(st<=l&&ed>=r){
laz[node].push_back(v);
return ;
}
int mid=(l+r)/2;
if(st<=mid)update(st,ed,v,l,mid,node*2);
if(ed>mid)update(st,ed,v,mid+1,r,node*2+1);
}
void dfs(int l,int r,int node, bitset<maxm> dp){
for(int v:laz[node]){
dp|=(dp<<v);
}
if(l==r){
ans|=dp;
return ;
}
int mid=(l+r)/2;
dfs(l,mid,node*2,dp);
dfs(mid+1,r,node*2+1,dp);
}
void solve(){
cin>>n>>q;
for(int i=1;i<=q;i++){
int l,r,x;cin>>l>>r>>x;
update(l,r,x,1,n,1);
}
bitset<maxm>dp;
dp[0]=1;
dfs(1,n,1,dp);
int cnt=0;
for(int i=1;i<=n;i++){
if(ans[i])cnt++;
}
cout<<cnt<<endl;
for(int i=1;i<=n;i++){
if(ans[i])cout<<i<<' ';
}
cout<<endl;
}
signed main() {
ios::sync_with_stdio(0);
cin.tie(0);
#ifndef ONLINE_JUDGE
freopen("../in.txt", "r", stdin);
freopen("../out.txt", "w", stdout);
#endif
#ifdef MULTI_CASE
int T;
cin >> T;
while (T--)
#endif
solve();
return 0;
}