Codeforces981 E. Addition on Segments(dp,线段树分治优化dp)

题意:

在这里插入图片描述

解法:
首先要想到一个重要结论:
对于位置i,如果我们想要a[i]为最大值所在位置,我们只需要选择包含i的区间即可.

对于位置i能取到的最大值,一个想法是对所有包含i的区间跑一边01背包。
转移方程: 对于值为v的区间, 枚举i,令dp[i+v]|=dp[i].
一次背包的复杂度为O(q*n).
由于该dp可以按区间转移,所以可以用bitset优化为O(q*n/w),
其中w为计算机一个字节的位数, 可以简单认为是32.

但对于n个位置都要计算一遍,总复杂度为O(n^2*q/w), 需要优化.

复杂度的瓶颈在于,对于某个区间操作集合S的交集[l,r],需要对(r-l+1)个位置都做同样的dp转移,导致了重复计算。
如果这(r-l+1)个位置,能够复用同一轮bitset的结果,那么复杂度就能减少了(r-l+1).

这里要引入线段树分治,线段树分治的做法是,对于区间[l,r,v],
以laz线段树的方式将区间[l,r,v]更新到在[l,r]在线段树的区间节点上.
这部分每次更新的复杂度是O(log), q次更新的总复杂度为O(q*log).

在所有更新跑完后,我们遍历线段树的每个区间节点,
每遍历到一个区间节点就把laz标记向下更新.
这样的话,每个区间节点就只会被更新一次,
相对于左右两个子节点复用了区间节点的bitset转移结果.

标记下放结束后,我们最后对叶子节点的bitset或起来就是答案.
标记下放需要遍历整个线段树,复杂度为节点数量2*n,O(n).
同时标记下放需要维护下放过程中的bitset, bitset更新的复杂度为O(n/w)
因此总复杂度为O(n^2/w)
Code:
#include <bits/stdc++.h>
using namespace std;
#define X first
#define Y second
#define int long long
#define PI pair<int, int>
const int maxm=1e4+5;
const int mod=998244353;
vector<int>laz[maxm<<2];
bitset<maxm>ans;
int n,q;
void update(int st,int ed,int v,int l,int r,int node) {
  if(st<=l&&ed>=r){
    laz[node].push_back(v);
    return ;
  }
  int mid=(l+r)/2;
  if(st<=mid)update(st,ed,v,l,mid,node*2);
  if(ed>mid)update(st,ed,v,mid+1,r,node*2+1);
}
void dfs(int l,int r,int node, bitset<maxm> dp){
  for(int v:laz[node]){
    dp|=(dp<<v);
  }
  if(l==r){
    ans|=dp;
    return ;
  }
  int mid=(l+r)/2;
  dfs(l,mid,node*2,dp);
  dfs(mid+1,r,node*2+1,dp);
}
void solve(){
  cin>>n>>q;
  for(int i=1;i<=q;i++){
    int l,r,x;cin>>l>>r>>x;
    update(l,r,x,1,n,1);
  }
  bitset<maxm>dp;
  dp[0]=1;
  dfs(1,n,1,dp);
  int cnt=0;
  for(int i=1;i<=n;i++){
    if(ans[i])cnt++;
  }
  cout<<cnt<<endl;
  for(int i=1;i<=n;i++){
    if(ans[i])cout<<i<<' ';
  }
  cout<<endl;
}
signed main() {
// #define MULTI_CASE
  ios::sync_with_stdio(0);
  cin.tie(0);
#ifndef ONLINE_JUDGE
  freopen("../in.txt", "r", stdin);
  freopen("../out.txt", "w", stdout);
#endif
#ifdef MULTI_CASE
  int T;
  cin >> T;
  while (T--)
#endif
    solve();
  return 0;
}


引用\[1\]中提到了一种树形动态规划的方法来解决CodeForces - 982C问题。在这个问题中,subtree指的是子连通块,而不是子树。为了使cnt_white - cnt_black尽可能大,可以使用两次树形动态规划来求解。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。如果ans\[u\]为正,则减去dp\[v\]就是树链所代表的子树的权值。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] 问题: CodeForces - 982C 树形DP是什么问题?如何解决? 回答: CodeForces - 982C是一个树形动态规划问题。在这个问题中,需要求解子连通块的最大权值和,使得cnt_white - cnt_black尽可能大。解决这个问题的方法是使用两次树形动态规划。第一次是自底向上的过程,维护一个dp数组,表示以每个节点为根的子树中的最大连通块。第二次是自顶向下的过程,处理自底向上过程中无法包含的树链所代表的子树。在第二次遍历中,需要维护一个sum变量,用于存储树链所代表的子树的贡献。根据ans\[u\]的正负,决定是否能对相邻的子节点做出贡献。最终,ans\[u\]代表包含节点u在内的子连通块的最大权值。\[1\] #### 引用[.reference_title] - *1* *2* [CodeForces - 1324F Maximum White Subtree(树形dp)](https://blog.csdn.net/qq_45458915/article/details/104831678)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^koosearch_v1,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值