gym101982 B.Coprime Integers(莫比乌斯反演,容斥)

题意:

给 定 a , b , c , d , 计 算 ∑ x = a b ∑ y = c d [ g c d ( x , y ) = 1 ] 给定a,b,c,d,计算\sum_{x=a}^b\sum_{y=c}^d[gcd(x,y)=1] a,b,c,d,x=aby=cd[gcd(x,y)=1]

数据范围:a,b,c,d<=1e7

解法:

给 定 a , b , c , d , 计 算 ∑ x = a b ∑ y = c d [ g c d ( x , y ) = 1 ] 给定a,b,c,d,计算\sum_{x=a}^b\sum_{y=c}^d[gcd(x,y)=1] a,b,c,d,x=aby=cd[gcd(x,y)=1]

写 过 一 道 更 难 的 题 , 是 计 算 ∑ x = a b ∑ y = c d [ g c d ( x , y ) = k ] 写过一道更难的题,是计算\sum_{x=a}^b\sum_{y=c}^d[gcd(x,y)=k] x=aby=cd[gcd(x,y)=k]

令 c a l ( a , b ) = ∑ i = 1 a ∑ j = 1 b [ g c d ( i , j ) = k ] 令cal(a,b)=\sum_{i=1}^a\sum_{j=1}^b[gcd(i,j)=k] cal(a,b)=i=1aj=1b[gcd(i,j)=k]

根 据 容 斥 , 答 案 为 c a l ( b , d ) − c a l ( a − 1 , d ) − c a l ( b , c − 1 ) + c a l ( a − 1 , c − 1 ) 根据容斥,答案为cal(b,d)-cal(a-1,d)-cal(b,c-1)+cal(a-1,c-1) ,cal(b,d)cal(a1,d)cal(b,c1)+cal(a1,c1)

那 么 问 题 变 为 如 何 计 算 c a l ( a , b ) 那么问题变为如何计算cal(a,b) cal(a,b)

− − − ---

设 f ( k ) = ∑ i = 1 a ∑ j = 1 b [ g c d ( i , j ) = k ] 设f(k)=\sum_{i=1}^a\sum_{j=1}^b[gcd(i,j)=k] f(k)=i=1aj=1b[gcd(i,j)=k]

f ( k ) 表 示 g c d 为 k 的 方 案 数 f(k)表示gcd为k的方案数 f(k)gcdk

F ( n ) = ∑ n ∣ k f ( k ) = ⌊ a n ⌋ ⌊ b n ⌋ F(n)=\sum_{n|k}f(k)=\lfloor \frac{a}{n} \rfloor\lfloor \frac{b}{n} \rfloor F(n)=nkf(k)=nanb

F ( n ) 表 示 g c d 为 n 的 倍 数 的 方 案 数 F(n)表示gcd为n的倍数的方案数 F(n)gcdn

反 演 得 : f ( k ) = ∑ n ∣ k μ ( k n ) F ( k ) = ∑ n ∣ k μ ( k n ) ⌊ a k ⌋ ⌊ b k ⌋ 反演得: f(k)=\sum_{n|k}μ(\frac{k}{n})F(k)=\sum_{n|k}μ(\frac{k}{n})\lfloor \frac{a}{k} \rfloor\lfloor \frac{b}{k} \rfloor :f(k)=nkμ(nk)F(k)=nkμ(nk)kakb

到 这 一 步 发 现 可 以 O ( n ) 计 算 了 , 我 就 不 继 续 优 化 了 ( 可 以 优 化 到 O ( s q ) ) 到这一步发现可以O(n)计算了,我就不继续优化了(可以优化到O(sq)) O(n),(O(sq))

code:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
const int maxm=1e7+5;
int np[maxm];
int p[maxm],cnt;
int mu[maxm];
int a,b,c,d;
void init(){
    mu[1]=1;
    for(int i=2;i<maxm;i++){
        if(!np[i]){
            p[cnt++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<cnt;j++){
            if(1ll*p[j]*i>=maxm)break;
            np[p[j]*i]=1;
            mu[p[j]*i]=i%p[j]?-mu[i]:0;
            if(i%p[j]==0)break;
        }
    }
}
ll cal(int a,int b){
    ll ans=0;
    for(int k=1;k<=min(a,b);k++){
        ans+=1ll*mu[k]*(a/k)*(b/k);
    }
    return ans;
}
signed main(){
    init();
    scanf("%d%d%d%d",&a,&b,&c,&d);
    ll ans=cal(b,d)-cal(a-1,d)-cal(b,c-1)+cal(a-1,c-1);
    printf("%lld\n",ans);
    return 0;
}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值