题意:
给定长度为n的序列a,
问所有子序列的mex的mex是多少,mex定义为集合内不存在的最小正整数。
数据范围:n<=1e5,1<=a(i)<=1e5
解法:
mex的取值为[1,n+1],那么mex的mex的取值为[1,n+2]
考虑从1到n+1枚举答案x,判断是否能够找到一个连续子序列,满足mex为x,
满足条件的连续子序列需要包含[1,x-1],且不包含x,
对于当前枚举到的数x,x的若干个位置会将序列分成若干段,有若干个分割点:
那么就是判断这些段,是否存在一个段,[1,x-1]都出现过。
定义pre[i]为i上一次出现的位置,
用权值线段树维护当前分割点pos之前的所有数最后一次出现的位置
如果一段中,数[1,x-1]的pre都>pre[x],说明这一段包含[1,x],
注意:
1.特判1。
2.n+1也是每个x的分界点,因此还需要判断一次。
code:
#include<bits/stdc++.h>
using namespace std;
const int maxm=1e5+5;
int mark[maxm];
int pre[maxm];
int ans[maxm];
int a[maxm];
int n;
struct Tree{//权值线段树维护每个数最后出现的位置
int a[maxm<<2];
inline void pp(int node){
a[node]=min(a[node*2],a[node*2+1]);
}
void update(int x,int val,int l,int r,int node){
if(l==r){
a[node]=val;return ;
}
int mid=(l+r)/2;
if(x<=mid)update(x,val,l,mid,node*2);
else update(x,val,mid+1,r,node*2+1);
pp(node);
}
int ask(int st,int ed,int l,int r,int node){
if(st<=l&&ed>=r)return a[node];
int mid=(l+r)/2;
int ans=1e9;
if(st<=mid)ans=min(ans,ask(st,ed,l,mid,node*2));
if(ed>mid)ans=min(ans,ask(st,ed,mid+1,r,node*2+1));
return ans;
}
}T;
signed main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
}
for(int i=1;i<=n;i++){
if(a[i]!=1){
ans[1]=1;
}
}
for(int i=1;i<=n;i++){
pre[i]=mark[a[i]];
mark[a[i]]=i;
}
for(int i=1;i<=n;i++){
T.update(a[i],i,1,n+1,1);
if(a[i]!=1){
int mi=T.ask(1,a[i]-1,1,n+1,1);
if(mi>pre[i])ans[a[i]]=1;
}
}
for(int i=2;i<=n+1;i++){//a[n+1]也是分割点,是每个数的分割点,还需要判断一次
int mi=T.ask(1,i-1,1,n+1,1);
if(mi>mark[i])ans[i]=1;
}
for(int i=1;i<=n+2;i++){
if(!ans[i]){
cout<<i<<endl;
break;
}
}
return 0;
}