题意:
给你两个字符串 word1 和 word2 ,请你按下述方法构造一个字符串:
从 word1 中选出某个 非空 子序列 subsequence1 。
从 word2 中选出某个 非空 子序列 subsequence2 。
连接两个子序列 subsequence1 + subsequence2 ,得到字符串。
返回可按上述方法构造的最长 回文串 的 长度 。如果无法构造回文串,返回 0 。
字符串 s 的一个 子序列 是通过从 s 中删除一些(也可能不删除)字符而不更改其余字符的顺序生成的字符串。
回文串 是正着读和反着读结果一致的字符串。
数据范围:
1 <= word1.length, word2.length <= 1000
word1 和 word2 由小写英文字母组成
解法:
容易想到以下情况(下图中的两个蓝色串是拼接的两个子序列):
肯定是左边和右边部分相同,然后中间部分是一段回文。
考虑将s串和t串中的t串翻转,那么上面的情况就变为:
左边部分相同,右边是一段回文。
左边部分可以预处理:d[i][j]为s串前i个字符和t串前j个字符的最长公共子序列,
右边部分的回文有两种情况:
1.该回文是s串中的,那么预处理d1[i][j]为s串[i,j]区间的最大回文子序列,
2.改回问是t串中的,那么预处理d2[i][j]为t串[i,j]区间的最大回文子序列。
最后枚举i和j,用d[i][j]*2+max(d1[i][n-1],d2[j][m-1])更新答案即可
所有预处理部分都是O(n^2)的.
计算答案也是O(n^2)的.
code:
class Solution {
public:
int d1[1111][1111];
int d2[1111][1111];
int d[1111][1111];
void init(int d[][1111],string& s,int n){
for(int len=1;len<=n;len++){
for(int i=0;i<n;i++){
int j=i+len-1;
if(j>=n)break;
if(len==1)d[i][j]=1;
else if(len==2){
d[i][j]=1;
if(s[i]==s[j])d[i][j]=2;
}else{
d[i][j]=max(d[i+1][j],d[i][j-1]);
if(s[i]==s[j])d[i][j]=max(d[i][j],d[i+1][j-1]+2);
}
}
}
}
void init2(int d[][1111],string& s,string& t,int n,int m){
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
d[i][j]=max(d[i][j-1],d[i-1][j]);
if(s[i-1]==t[j-1])d[i][j]=max(d[i][j],d[i-1][j-1]+1);
}
}
}
int longestPalindrome(string s, string t) {
memset(d,0,sizeof d);
memset(d1,0,sizeof d1);
memset(d2,0,sizeof d2);
reverse(t.begin(),t.end());
int n=s.size(),m=t.size();
init(d1,s,n);
init(d2,t,m);
init2(d,s,t,n,m);
int ans=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
int t=d[i][j];
if(!t)continue;
int tt=max(d1[i][n-1],d2[j][m-1]);
ans=max(ans,t*2+tt);
}
}
return ans;
}
};