LeetCode 5688. 由子序列构造的最长回文串的长度(dp)

题意:
给你两个字符串 word1 和 word2 ,请你按下述方法构造一个字符串:

从 word1 中选出某个 非空 子序列 subsequence1 。
从 word2 中选出某个 非空 子序列 subsequence2 。
连接两个子序列 subsequence1 + subsequence2 ,得到字符串。
返回可按上述方法构造的最长 回文串 的 长度 。如果无法构造回文串,返回 0 。

字符串 s 的一个 子序列 是通过从 s 中删除一些(也可能不删除)字符而不更改其余字符的顺序生成的字符串。

回文串 是正着读和反着读结果一致的字符串。

数据范围:
1 <= word1.length, word2.length <= 1000
word1 和 word2 由小写英文字母组成
解法:
容易想到以下情况(下图中的两个蓝色串是拼接的两个子序列):
肯定是左边和右边部分相同,然后中间部分是一段回文。

在这里插入图片描述

考虑将s串和t串中的t串翻转,那么上面的情况就变为:

在这里插入图片描述

左边部分相同,右边是一段回文。
左边部分可以预处理:d[i][j]为s串前i个字符和t串前j个字符的最长公共子序列,
右边部分的回文有两种情况:
1.该回文是s串中的,那么预处理d1[i][j]为s串[i,j]区间的最大回文子序列,
2.改回问是t串中的,那么预处理d2[i][j]为t串[i,j]区间的最大回文子序列。

最后枚举i和j,用d[i][j]*2+max(d1[i][n-1],d2[j][m-1])更新答案即可

所有预处理部分都是O(n^2).
计算答案也是O(n^2).
code:
class Solution {
public:
    int d1[1111][1111];
    int d2[1111][1111];
    int d[1111][1111];
    void init(int d[][1111],string& s,int n){//d[i][j]表示[i,j]的最长回文子序列.
        for(int len=1;len<=n;len++){
            for(int i=0;i<n;i++){
                int j=i+len-1;
                if(j>=n)break;
                if(len==1)d[i][j]=1;
                else if(len==2){
                    d[i][j]=1;
                    if(s[i]==s[j])d[i][j]=2;
                }else{
                    d[i][j]=max(d[i+1][j],d[i][j-1]);
                    if(s[i]==s[j])d[i][j]=max(d[i][j],d[i+1][j-1]+2);
                }
            }
        }
    }
    void init2(int d[][1111],string& s,string& t,int n,int m){//d[i][j]表示s[0,i-1]和t[0,j-1]的最长公共子序列.
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                d[i][j]=max(d[i][j-1],d[i-1][j]);
                if(s[i-1]==t[j-1])d[i][j]=max(d[i][j],d[i-1][j-1]+1);
            }
        }
    }
    int longestPalindrome(string s, string t) {
        //init
        memset(d,0,sizeof d);
        memset(d1,0,sizeof d1);
        memset(d2,0,sizeof d2);
        reverse(t.begin(),t.end());
        //
        int n=s.size(),m=t.size();
        init(d1,s,n);
        init(d2,t,m);
        init2(d,s,t,n,m);
        int ans=0;
        for(int i=1;i<=n;i++){
            for(int j=1;j<=m;j++){
                int t=d[i][j];
                if(!t)continue;//两边必须非空,所以t不能为0.
                int tt=max(d1[i][n-1],d2[j][m-1]);
                ans=max(ans,t*2+tt);
            }
        }
        return ans;
    }
};

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值