题意:

解法:
n太大了,显然先离散化.
[l,r]的奇偶不同,可以看作是[1,l-1]和[1,r]的奇偶数不同,
令选择点i表示[1,i]为偶数,令选择点i+n表示[1,i]的奇偶性为奇数.
当给定[l,r],even时,可以转化为:
(l-1)和(r)的奇偶性质必须相同,即(l-1)偶时,(r)必须奇,那么选(l-1)时必选(r+n).
或(r)偶时,(l-1)必须奇,那么选(r)时必选(l-1+n).
当给定[l,r],odd时,同理.
发现就是点2-sat问题,由于这题是无向边,可以直接用并查集判断强连通分量,
设(x)奇为点x,(x)偶为点(x+n),
每次根据给定的条件用并查集合并连通块,当点x和点x+n在同一个连通块时,说明发生冲突,
那么答案就出来了.
code:
#include<iostream>
#include<algorithm>
#define int long long
using namespace std;
const int maxm=2e6+5;
int l[maxm],r[maxm],f[maxm];
int xx[maxm],num;
int pre[maxm];
int n,m;
int ffind(int x){
return pre[x]==x?x:pre[x]=ffind(pre[x]);
}
void solve(){
cin>>n>>m;
for(int i=1;i<=m;i++){
cin>>l[i]>>r[i];
string s;cin>>s;
l[i]--;
f[i]=(s[0]=='o');
xx[++num]=l[i];
xx[++num]=r[i];
}
sort(xx+1,xx+1+num);
num=unique(xx+1,xx+1+num)-xx-1;
for(int i=1;i<=m;i++){
l[i]=lower_bound(xx+1,xx+1+num,l[i])-xx;
r[i]=lower_bound(xx+1,xx+1+num,r[i])-xx;
}
for(int i=1;i<=num*2;i++)pre[i]=i;
for(int i=1;i<=m;i++){
if(f[i]){
pre[ffind(l[i])]=ffind(r[i]+num);
pre[ffind(r[i])]=ffind(l[i]+num);
}else{
pre[ffind(l[i])]=ffind(r[i]);
pre[ffind(l[i]+num)]=ffind(r[i]+num);
}
if(ffind(l[i])==ffind(l[i]+num)||ffind(r[i])==ffind(r[i]+num)){
cout<<i-1<<endl;return ;
}
}
cout<<m<<endl;
}
signed main(){
ios::sync_with_stdio(0);cin.tie(0);
solve();
return 0;
}