- 博客(53)
- 收藏
- 关注
原创 KNN,Kmeans,贝叶斯,决策树总结
KNN算法(监督学习,适用于少量数据)kNN思想该算法的思想是:一个样本与数据集中的k个样本最相似,如果这k个样本中的大多数属于某一个类别,则该样本也属于这个类别。(1)KNN属于惰性学习(lazy-learning)这是与急切学习(eager learning)相对应的,因为KNN没有显式的学习过程!也就是说没有训练阶段,从上面的例子就可以看出,数据集事先已有了分类和特征值,待收到新样本...
2019-04-29 20:42:48 1720
原创 Tesorflow实现一元线性回归
import tensorflow as tf# tf.app.flags.DEFINE_integer("train_step",100,"训练步数")# tf.app.flags.DEFINE_string("model_dir"," ","模型目录")### FLAGS =tf.app.flags.FLAGSclass MyLinearRegression(object):...
2019-04-28 22:03:31 197
原创 决策树之实现
import pandas as pdfrom sklearn.feature_extraction import DictVectorizerfrom sklearn.tree import DecisionTreeClassifierfrom sklearn.model_selection import train_test_split##http://biostat.mc.van...
2019-04-25 22:11:34 181
原创 贝叶斯分类——分词实例(停用词)
import pandas as pddata_origin = pd.read_csv('data.csv',encoding = 'gbk')#打开停用词文件with open('stopwords.txt','r',encoding = 'utf-8') as fp: stop_words = fp.readlines() #返回列表#通过map函数将空格去掉,再用map...
2019-04-24 19:15:16 606
原创 matplotlib之绘制柱状图,直方图,饼图
import matplotlib.pyplot as pltimport numpy as npdata = np.load("国民经济核算季度数据.npz")values = data['values']columns = data['columns']plt.rcParams['font.sans-serif'] = 'SimHei' #仿宋plt.rcParams['ax...
2019-04-15 20:21:32 209
原创 matplotlib之添加子图
import matplotlib.pyplot as pltimport numpy as nprad = np.arange(0,np.pi*2 + 0.1 , 0.1)#siny = np.sin(rad)#画布p1 = plt.figure(figsize = (8,6),dpi = 80) #figsize画布大小 , dpi指分辨率plt.title('sin/co...
2019-04-15 20:11:43 1116
原创 matplotlib包基本操作附带xmind
import matplotlib.pyplot as pltimport numpy as npx = np.arange(0,1.1,0.1)y = 2*x + 1y1 = x**2 - 1#1创建画布plt.figure()#修改参数plt.rcParams[‘font.sans-serif’] = ‘SimHei’ #仿宋plt.rcParams[‘axes.unico...
2019-04-15 19:56:14 260
原创 numpy之数组统计函数(排序,去重,方差,标准差等)
import numpy as np#排序arr = np.random.randint(1,10,size=10)arr.sort() #sort() 没有返回值,排序完直接调用;sorted()有返回值print("排序后",arr)arr1 = np.random.randint(1,10,size = (3,3))print(arr1)arr1.sort()print...
2019-04-12 22:18:25 1604
原创 numpy中的文件读取
import numpy as nparr = np.arrange(100).reshape((10,10))np.save('arr',arr)#.npy是一个二进制文件,存放的是一个数组; 文件可以不声明后缀arr2 = np.arange(100).reshape((20,5))np.savez('arr2',arr2)#返回的是np2文件:是一个二进制文件#读取文件:...
2019-04-12 21:45:55 12070
原创 numpy之矩阵基本操作(加减乘,转置,求逆)
import numpy as np#矩阵创建matrix1 = np.mat(“1 2 3;4 5 6;7 8 9”)print(matrix1,type(matrix1))matrix2 = np.matrix([[1,2,3],[4,5,6],[7,8,9]])print(matrix2)arr1 = np.eye(3)arr2 = 3*np.eye(3)matrix3 = ...
2019-04-12 21:34:09 7481 1
原创 numpy之数组索引,组合,分割
import numpy as np#数组索引arr = np.arange(10)print(arr[2])print(arr[::2])print(arr[-1])#二维数组的索引#(1)位置索引连续arr2 = np.array([[1,2,3,4,5],[4,5,6,7,8],[7,8,9,10,11]])print(arr2)#print(arr2[行索引值,列索...
2019-04-12 21:00:15 504
原创 数据分析之numpy函数的使用(附带xmind)
import numpy as np#numpy:用来做科学计算的模块:数组,矩阵如何利用numpy,创建多维数组:如何利用numpy创建随机数如何创建我们的矩阵,矩阵的运算,数组的运算利用numpy读数据numpy的统计函数创建一个数组只有一行的数组叫:一维数组arry = np.array([1,2,3,4])print(arry,type(arry)) # [1 ...
2019-04-11 20:16:02 228
转载 python之生成器和迭代器
转载:https://www.cnblogs.com/wj-1314/p/8490822.html生成器函数:也是用def定义的,利用关键字yield一次性返回一个结果,阻塞,重新开始 生成器表达式:返回一个对象,这个对象只有在需要的时候才产生结果——生成器函数为什么叫生成器函数?因为它随着时间的推移生成了一个数值队列。一般的函数在执行完毕之后会返回一个值然后退出,但是生成器函数会自动...
2019-04-10 10:23:09 127
转载 Python中变量、赋值、浅拷贝、深拷贝(转载)
转载地址:https://www.cnblogs.com/LetMe/p/6724555.htmlPython中变量、赋值、浅拷贝、深拷贝在理解浅拷贝和深拷贝之前,首先要理解学习一下变量在Python中是怎样存储的;变量的类型是分值引用与地址引用两种.python的一切变量都是对象,变量的存储,采用了地址引用的方式,存储的只是一个变量的值所在的内存地址,而不是这个变量的只本身。在Pyt...
2019-04-09 21:26:05 484
原创 python连接redis数据库
import redisclass Redis():def init(self):self.r = self.conn_redis()# self.str_text()# self.hash_test()# self.list_text()# self.set_text()self.z_set()#连接数据库def conn_redis(self): r =redis....
2019-04-06 22:10:00 420
原创 Python连接MongoDB数据库
import pymongoclass MongoDeal(): def __init__(self): self.db = self.conn_mongo() self.count = 1 def conn_mongo(self): #创建mongo连接 client = pymongo.MongoClient('127.0.0.1',27017) db = cl...
2019-04-06 21:20:03 433
原创 关于Json数据类型
json数据类型分为三种1.常规的字典(对象类型)即a = {key1:value1,key2:value2}2.列表中有字典(数组类型)即a = [{"name":"zs","age":17},{"name":"ls","age":10}]3.json对象数组即 a = {key:[{k1:v1},{k2,v2},{k3,v3}]}...
2019-04-03 17:26:28 175
原创 爬虫之Xpath应用
from lxml import etree#用来获取解析后的数据html = etree.HTML(text)#用来解析文本html = etree.parse(“index2.html”)#用来解析html文档#1获取文档中的所有标签books = html.xpath("//book")#2第一个bookfirst_book = book[0]#3 获取第一本book中的hr...
2019-03-24 21:24:02 142
原创 爬虫之get-cookie和post-session值
COOKIE获取#获取响应数据的cookie值def get_cookie(): base_url = "http://www.baidu.com" response = request.get(base_url) #获取cookie数据 cookiejar = response.cookies print(cookiejar) #从cookiejar里面提取c...
2019-03-24 18:59:38 358
原创 爬虫之加salt加sign
import requests,json,time,randomimport hashlib#加密函数def getmd5(sign): #创建md5对象 md5_obj = hashlib.md5() #对sign进行加密 md5_obj.update(bytes(sign,encoding="utf-8")) #16位加密 sign = ...
2019-03-20 22:32:36 1023
原创 爬虫之两种网页获取办法
第一种获取方法import requests#将参数字典进行编码from urllib import parse#携带参数的get请求,携带参数的第二种方式base_url = "http://search.sina.com.cn/?q=A%B9%C9&range=all&c=news&sort=time"#生成参数qs = { "q": ...
2019-03-20 22:24:28 303
原创 Django之短信验证
安装requests模块import requests#去互亿http://www.ihuyi.com/url = ‘http://106.ihuyi.com/webservice/sms.php?method=Submit’mobile = ‘xxxxxx’ #电话号account= ‘xxxxx’ #上面的APIIDpassword = ‘xxxxx’ #为上图的APIKEY...
2019-03-12 20:51:10 560
原创 Django之邮箱验证在项目中的应用
VIEWSimport random,timefrom django.core.mail import EmailMultiAlternativesfrom django.http import JsonResponsefrom Buyer.models import EmailVaildimport hashlib#定义一个加密函数def pwd_encrypt(passwor...
2019-03-12 20:28:45 781
原创 Django之邮箱验证(在dango中运行,推荐使用,成功率很高)
view函数中from django.core.mail import EmailMultiAlternatives from django.http import JsonResponsedef send_message(request): result = {'state':'error', 'data':''} #定义一个字典,用来记录运行情况 try: subject = ...
2019-03-12 19:43:57 540
原创 Django之邮箱验证(pycharm编写,经常运行不了,不推荐)
import smtplib #邮件模块from email.mine.text import MIMEText #导入邮件文本#构建邮件subjecet = ‘不是垃圾邮件’ #主题content = ‘你的验证码是:8899’#内容recver = 'XXXXXXX@qq.com' #接收sender = 'XXXXXX@163.com' #登录163服务器的账号passw...
2019-03-12 19:19:21 610
原创 Flask之Flask-sqlalchemy模块的导入方式
from flask import Flask,render_template,request,redirect#SQLALchemyfrom flask_sqlalchemy import SQLAlchemyimport os ,datetimeapp = Flask(__name__)1、数据库路径basedir = os.path.abspath(os.path.dirnam...
2019-03-08 14:42:08 1281
原创 Flask之ORM(对象关系映射)增删改查
import sqlalchemyfrom sqlalchemy.ext.declarative import declarative_base#实例化数据 --->> django中settings中的配置db = sqlalchemy.create_engine('sqlite:////flask\demo01/test01.db')创建表类的基类 ------&gt...
2019-03-07 21:02:17 501
原创 Flask之模板系统
模板系统Flask 默认使用jinjia2 模板系统,这个系统是仿写Django的模板系统。jinjia2模板系统不止用在flask上,tornado,saltatack,ansible这些框架都会用,后两个框架是python写的Linux自动化部署框架,flask默认加载自己目录下的templates 作为模板目录, static作为静态目录。...
2019-03-07 20:26:42 258
原创 Flask之介绍和安装
介绍FlaskFalsk 和 Django 一样, 是一个web框架,用来做网站Django 给用户提供了完整的封装,创建项目后,就有了完整的项目结构,优点在于开发的难度低,缺点是不够灵活。Flask给用户提供了简单的封装,大部分功能需要开发者自己编写,所以开发足够灵活。安装Flask1、创建虚拟环境Virtualenv 虚拟环境的名字2、进入虚拟环境和Django一样进入scr...
2019-03-07 19:36:21 164
转载 机器学习之F1(正确率与召唤率)
正确率与召唤率(precision and Recall)是广泛应用于信息检索和统计学分类领域的两个度量值,用来评价结果的质量。一般来说,正确率就是检索出来的条目有多少是正确的,召回率就是所有正确的条目有多少被检索出来了。我们希望检索结果Precision越高越好,同时Recall也越高越好,但事实上这两者在某些情况下是有矛盾的。比如极端的情况下,我们只搜索出了一个结果,而且是准确的,那...
2019-03-06 21:16:43 1234
原创 Django之富文本编辑器的使用指南
安装django-ckeditor 到虚拟环境pip install django-ckeditor或者在setting中安装安装appCkeditor配置CKEDITOR_UPLOAD_PATH = ‘static/upload’CKDITOR_IMAGE_BACKEND =‘pillow’url配置使用自己的字段,models中如果前端使用,先收集静态文件收集之前:...
2019-03-05 21:16:26 173
转载 Django之COOKIES和SESSION
装饰器 验证cookies def user_decorater(func): def inner(request, *args, **kwargs): username = request.COOKIES.get('username') password = request.COOKIES.get('password')...
2019-03-02 21:26:45 119
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人