目前的深度学习在学校研究中,备受学生的“认可”,似乎很多任务都可以采用它来进行解决。但在学习的过程中,有时候总是无法理解“识别”和“预测”两者之间的不同。以下总结一下自己的想法:
识别:识别是一个对已知采样数据集的“统计”过程,针对不同的特征参数,得到一个当前时刻的输出参数,这个输出参数就是一个识别的过程。可以是图像的缺陷识别或者是非线性输出识别(神经网络尝尝被用于非线性模型的建立,简化计算,如锂电池SOC、SOH估计等等)。
预测:预测是一个对已知采样数据集的“统计”+“推广”过程,针对不同的特征参数的变化趋势(可以是时间序列),得到一个下一时刻的输出参数,这个输出参数就是一个预测的过程。可以是医学图像中疾病的预测(根据CT得到的图像信息,预测是否可能出现的疾病问题),也可以是环境变化的预测(对气象变化的预测)。
输出参数的时间信息:当前时刻还是未来时刻,我认为这就是“识别”和“预测”的区别。识别能够优化当前整个模型的信息,预测能够把握未来整个模型的信息。两者都具有实际的意义,但是现在有一些的研究,某某预测,其实有时候都是没有意义的一种预测,放在研究中可能具有一定内容,但是结合实际来看,没有任何的意义和价值,比较的“虚”,但是“识别”不会出现这一问题,大家在进行研究时还是要对其进行一定的区分,再来进行选择。