“识别”和“预测”概念的区别

本文探讨了深度学习中识别与预测的概念及其应用。识别侧重于当前数据的统计分析,而预测则涉及对未来数据的趋势预估。文章强调了两者在实际应用中的重要性及区别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目前的深度学习在学校研究中,备受学生的“认可”,似乎很多任务都可以采用它来进行解决。但在学习的过程中,有时候总是无法理解“识别”和“预测”两者之间的不同。以下总结一下自己的想法:

识别:识别是一个对已知采样数据集的“统计”过程,针对不同的特征参数,得到一个当前时刻的输出参数,这个输出参数就是一个识别的过程。可以是图像的缺陷识别或者是非线性输出识别(神经网络尝尝被用于非线性模型的建立,简化计算,如锂电池SOC、SOH估计等等)。

预测:预测是一个对已知采样数据集的“统计”+“推广”过程,针对不同的特征参数的变化趋势(可以是时间序列),得到一个下一时刻的输出参数,这个输出参数就是一个预测的过程。可以是医学图像中疾病的预测(根据CT得到的图像信息,预测是否可能出现的疾病问题),也可以是环境变化的预测(对气象变化的预测)。

输出参数的时间信息:当前时刻还是未来时刻,我认为这就是“识别”和“预测”的区别。识别能够优化当前整个模型的信息,预测能够把握未来整个模型的信息。两者都具有实际的意义,但是现在有一些的研究,某某预测,其实有时候都是没有意义的一种预测,放在研究中可能具有一定内容,但是结合实际来看,没有任何的意义和价值,比较的“虚”,但是“识别”不会出现这一问题,大家在进行研究时还是要对其进行一定的区分,再来进行选择。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值