tensorboard新手踩坑实录

文章讲述了深度学习新手在使用Tensorboard进行训练过程可视化时遇到的问题,即未经归一化的数据导致输出显示错误。虽然损失函数正常下降且权重测试正确,但每个epoch的输出因未归一化而不准确。作者建议在数据加载阶段就进行归一化,以避免后续的困扰,并指出在CV任务中通常会使用transform.normalize()进行数据预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.作为一个深度学习的新手小白,想在训练的时候对于每个epoch的训练进行输出可视化。tensorboard是个好用的工具。代码如下:

log_writer=SummaryWriter(log_dir="logs")#文件夹名

log_writer.add_scalar("train_loss_epoche",train_loss,epoch)

log_writer.add_scalar("val_loss_epoche",val_loss,epoch)   #给损失函数画图 log_writer.add_images("train_figure_epoche",np.array([output_train]),epoch,dataformats='CHW')

log_writer.add_images("val_figure_epoche",output_val,epoch,dataformats='CHW')#给每层的epoch输出画图

 log_writer.close()

经过可视化之后,离谱的是我的损失函数是在正常下降,而且生成的权重经过测试之后效果是正确的,但是每个epoch的输出显示 有误。经过一系列的排查,发现是tensorboard的显示原因

tensorboard的数据输入之前一定要归一化,如果没有归一化,显示出来的图可能不是你想要的图,影响对训练的判断!!!!!!!!!!!

当然很多做cv的uu们,会在数据集载入的时候就会做transform.normalize(),进行数据归一化。但是我由于做的项目的原因暂时无法对真值做归一化处理,导致数据在进入tensorboard之前没有归一化。

如果可以在载入的时候就做归一化是最好的,后面会省掉很多麻烦!!!!!!

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值