Matlab拟合——Curve Fitting工具

本文介绍了如何使用Matlab的Curve Fitting工具进行数据拟合,包括用函数表达式拟合、自定义函数拟合、无函数表达式的插值拟合,并展示了拟合设置和导出拟合函数的方法,通过实例解析了拟合的过程和结果评估。
摘要由CSDN通过智能技术生成

这两天也简单地用了matlab去拟合离散数据,感觉还是非常方便的。这里记录一下自己使用matlab拟合的流程,也希望你太清楚matlab拟合用法的小伙伴能有所收获。

1 打开工具

打开matlab,点击左上角的APP,找到Curve Fitting工作(当然打开它的方式有很多,不做展开)。
在这里插入图片描述
打开以后的窗口如图
在这里插入图片描述
这个窗口里有的选项也是超级多,但我会得不多,只是去摸索了一些够自己用的东西。

2 用函数表达式拟合数据

拟合数据前,肯定是要先有数据,因此咱们先做点数据。

x = 1:0.2:4;
y = x.^2 + rand(1,size(x,2));
plot(x,y,'+');

(x,y)就是我们创建的离散数据,数据的分布如下图:
在这里插入图片描述

因为加入了噪声,所以数据点的形状存在一些波动。那么现在用Curve Fitting工具来对这些离散数据做拟合。打开Curve Fitting工具,看到窗口的左边有【Fit name】、【X data】、【Y data】、【Z data】等等东西(我没有写的东西不是我忘写了,是我也不知道是干啥的)。

主要来看【X data】和【Y data】,这里是要输入要拟合的离散数据,那么【X data】就选刚刚创建的x序列,【Y data】就选刚刚船舰的y序列,画面上就会出现这些数据的分布了,如下图
在这里插入图片描述

然后看到窗口的中上部分,这里可以选择拟合的方式,关于拟合方式的详细介绍,大家可以看这篇文章,因为是人家整理的东西,我也不好直接复制过来。

### 回答1: MATLAB中的curve fitting工具箱主要用于实现数据拟合,可以用来根据已知的输入数据,估计未知的模型参数,并进行曲线拟合。可以使用多种拟合方法,如线性拟合、非线性拟合、指数拟合、多项式拟合等等。 ### 回答2: MATLAB中的curve fitting工具箱是一个强大的工具,可以帮助我们拟合和分析实验数据。以下是其主要用法: 1. 加载数据:首先,我们需要将实验数据加载到MATLAB中。可以通过直接输入数据,或者从外部文件中导入数据。 2. 选择拟合函数:在curve fitting工具箱中,有多种拟合函数可供选择,如线性、多项式、指数、对数、幂函数等。根据实验数据的特点,选择合适的拟合函数。 3. 创建拟合对象:使用fit函数创建一个拟合对象,通过指定拟合函数和数据进行拟合。例如,对于线性拟合,可以使用polyfit函数。 4. 拟合参数求解:拟合对象包含了拟合函数的参数。我们可以使用coeffvalues函数获取这些参数的值,并根据需要进行后续分析。 5. 绘制拟合曲线:使用plot函数可以绘制原始数据和拟合曲线,方便观察拟合效果。 6. 评估拟合质量:我们可以使用rsquare函数计算拟合的决定系数,来评估拟合的质量。决定系数越接近1,拟合效果越好。 7. 预测和插值:拟合对象可以用于预测新的数据点或者(在数据范围内)做插值。可以使用predict函数实现这些功能。 8. 自定义拟合过程:如果需要,可以使用自定义拟合函数,并通过设置选项来优化拟合过程。curve fitting工具箱提供了灵活的选项供用户自定义。 总结而言,MATLAB中的curve fitting工具箱提供了多种强大的方法和函数,方便我们对实验数据进行拟合和分析。通过选择合适的拟合函数和对拟合对象进行操作,我们可以得到拟合参数、绘制拟合曲线、评估拟合质量等,并进行预测和插值。同时,我们也可以根据需要进行自定义拟合和优化。 ### 回答3: MATLAB中的curve fitting工具箱是一个功能强大的工具,用于拟合和分析数据。它提供了各种方法和函数,使我们能够根据给定的数据找到最佳的曲线模型。 首先,我们可以使用curve fitting工具箱中的fit函数来进行曲线拟合。该函数可以根据给定的数据和拟合模型选择最佳的参数,并返回一个拟合对象。例如,我们可以使用多项式模型进行拟合,代码如下: x = [1, 2, 3, 4, 5]; y = [2, 4, 6, 8, 10]; fitobj = fit(x', y', 'poly2'); 这样,我们就可以得到一个二次多项式的拟合对象fitobj。 接下来,我们可以使用拟合对象进行预测或计算。例如,可以使用predict函数来根据拟合模型预测新的数据点。代码如下: x_new = 6; y_new = predict(fitobj, x_new); 这样,我们就可以得到x_new对应的y_new值。 此外,curve fitting工具箱还提供了其他强大的函数和方法,例如可以使用coeffvalues函数获取拟合模型的系数值,使用confint函数获取系数的置信区间,使用rsquare函数计算拟合模型的拟合优度等等。 总之,MATLAB中的curve fitting工具箱提供了丰富的功能和方法,可以帮助我们拟合和分析数据,以找到最佳的曲线模型。无论是简单的线性拟合还是复杂的非线性拟合,该工具箱都能满足我们的需求,并提供了方便的函数和方法来处理拟合结果。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值