Numpy 中如何矩阵的特征对排序

本文介绍了在Numpy中如何对矩阵的特征值和特征向量进行从大到小的排序。通过使用numpy.linalg.eigvals()获取特征值,并结合排序索引的特性,通过对特征值取负来实现降序排列。最后,利用排序后的索引对特征向量进行操作,从而得到相应排序的特征向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

1. 问题

用 Numpy 求解矩阵特征对的时候,返回结果大小是随机的,而我们数据挖掘求解的时候常需要把特征值按从大到小的顺序排列。如何简单的实现对特征值和特征向量排序呢?

2. 分析

Numpy 的 argsort 函数,可以提取排序后的索引。举例来说

a = np.array([3, 1, 2, 4])
b = np.argsort(a)

其结果为

array([1, 2, 0, 3])

其对应关系为,b 中的元素就是 a 中元素从小到大后的索引。大意如下

                         a = [3, 1, 2, 4]

                         b = [1, 2, 0, 4]
smallest item index <---------+  +  +  +-----> Last smallest item index
                                 |  |
  seconde smallest  <------------+  +--------> Third smallest
        item index                             item index
                             Small to big
                    +------------------------>

但这有一个问题,就是排列都是从小到大,Data Mining 里面很多时候都需要特征值从大到小排列。很遗憾 Numpy 并没有给我们提供选项,所以需要我们自己想办法。考虑到排列顺序乘以相反数以后正好颠倒,我们可以对待排序的 array 取相反数


                
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值