加权最小二乘法

加权最小二乘法是广义最小二乘法的一种特殊情形,它通过对数据赋予不同权重来优化回归分析。文章介绍了加权最小二乘法与普通最小二乘法的关系,包括广义最小二乘法的概念,并展示了如何通过权重矩阵将加权最小二乘法转换为普通最小二乘法模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

加权最小二乘法

参考文献

加权最小二乘法与局部加权线性回归

逻辑

  1. 普通最小二乘法OLS
  2. 加权最小二乘法
    (1) 广义最小二乘法(加权最小二乘法是广义最小二乘法的一种特殊情形)
    (2) 加权最小二乘法
    (3) 广义最小二乘 & 普通最小二乘模型 的转换

一 普通最小二乘法OLS

普通最小二乘法的回归模型: Y = X β + ϵ Y=Xβ+\epsilon Y=Xβ+ϵ
Y : n ∗ 1 , X : n ∗ p , ϵ : p ∗ 1 , Y: n∗1, X: n∗p, \epsilon: p∗1, Y:n1,X:np,ϵ:p1, 由于有常数项,所以自变量个数其实是 p − 1 p-1 p1 个.

普通最小二乘法就是使得 残差平方和 最小: R S S ( β ) = ∣ ∣ Y − X β ∣ ∣ 2 = ( Y − X β ) T ( Y − X β ) . RSS(β)=||Y−Xβ||^2=(Y−Xβ)^T(Y−Xβ). RSS(β)=YXβ2=(YXβ)T(YXβ). β \beta β 的估计: β ^ = ( X T X ) − 1 X T Y . \hat{\beta}=(X^TX)^{−1}X^TY. β^=(XTX)1XTY.
在这里插入图片描述
在该假设下,估计 β ^ \hat{\beta} β^ β β β 所有线性无偏估计中方差最小的。

二 加权最小二乘法

加权最小二乘法是广义最小二乘法的一种特殊情形,普通最小二乘法是一种特殊的加权最小二乘法。
普通最小二乘法 ∈ \in 加权最小二乘法 ∈ \in 广义最小二乘法

1 广义最小二乘法

广义最小二乘法模型:
在这里插入图片描述
Σ Σ Σ 是我们已知的一个 n ∗ n n∗n nn 正定对称矩阵,其中 σ 2 σ^2 σ2 不一定是已知的。且不要求误差项 ϵ \epsilon ϵ 的各分量间互不相关了。

广义最小二乘法就是使得 广义残差平方和 最小: R S S ( β ) = ( Y − X β ) T Σ − 1 ( Y − X β ) . RSS(β)=(Y−Xβ)^TΣ^{-1}(Y−Xβ). RSS(β)=(YXβ)TΣ1(YXβ). β β β 的估计: β ^ = ( X T Σ − 1 X ) − 1 X T Σ − 1 Y . \hat{β}=(X^TΣ^{-1}X)^{-1}X^TΣ^{-1}Y. β^=(XTΣ1X)1XTΣ1Y.

2 加权最小二乘法

加权最小二乘法:对上述的 Σ Σ Σ 取一种特殊的矩阵——对角阵,且这个对角阵的对角元都是常数,也就是权重 w i w_i wi 的倒数.
C o v ( ϵ ) = σ 2 Σ = σ 2 (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值