加权最小二乘法
参考文献
逻辑
- 普通最小二乘法OLS
- 加权最小二乘法
(1) 广义最小二乘法(加权最小二乘法是广义最小二乘法的一种特殊情形)
(2) 加权最小二乘法
(3) 广义最小二乘 & 普通最小二乘模型 的转换
一 普通最小二乘法OLS
普通最小二乘法的回归模型: Y = X β + ϵ Y=Xβ+\epsilon Y=Xβ+ϵ
Y : n ∗ 1 , X : n ∗ p , ϵ : p ∗ 1 , Y: n∗1, X: n∗p, \epsilon: p∗1, Y:n∗1,X:n∗p,ϵ:p∗1, 由于有常数项,所以自变量个数其实是 p − 1 p-1 p−1 个.
普通最小二乘法就是使得 残差平方和 最小: R S S ( β ) = ∣ ∣ Y − X β ∣ ∣ 2 = ( Y − X β ) T ( Y − X β ) . RSS(β)=||Y−Xβ||^2=(Y−Xβ)^T(Y−Xβ). RSS(β)=∣∣Y−Xβ∣∣2=(Y−Xβ)T(Y−Xβ). β \beta β 的估计: β ^ = ( X T X ) − 1 X T Y . \hat{\beta}=(X^TX)^{−1}X^TY. β^=(XTX)−1XTY.
在该假设下,估计 β ^ \hat{\beta} β^ 是 β β β 所有线性无偏估计中方差最小的。
二 加权最小二乘法
加权最小二乘法是广义最小二乘法的一种特殊情形,普通最小二乘法是一种特殊的加权最小二乘法。
普通最小二乘法 ∈ \in ∈ 加权最小二乘法 ∈ \in ∈ 广义最小二乘法
1 广义最小二乘法
广义最小二乘法模型:
Σ Σ Σ 是我们已知的一个 n ∗ n n∗n n∗n 正定对称矩阵,其中 σ 2 σ^2 σ2 不一定是已知的。且不要求误差项 ϵ \epsilon ϵ 的各分量间互不相关了。
广义最小二乘法就是使得 广义残差平方和 最小: R S S ( β ) = ( Y − X β ) T Σ − 1 ( Y − X β ) . RSS(β)=(Y−Xβ)^TΣ^{-1}(Y−Xβ). RSS(β)=(Y−Xβ)TΣ−1(Y−Xβ). β β β 的估计: β ^ = ( X T Σ − 1 X ) − 1 X T Σ − 1 Y . \hat{β}=(X^TΣ^{-1}X)^{-1}X^TΣ^{-1}Y. β^=(XTΣ−1X)−1XTΣ−1Y.
2 加权最小二乘法
加权最小二乘法:对上述的 Σ Σ Σ 取一种特殊的矩阵——对角阵,且这个对角阵的对角元都是常数,也就是权重 w i w_i wi 的倒数.
C o v ( ϵ ) = σ 2 Σ = σ 2 (