欧拉降幂全过程

乘法逆元

a x = 1 ( m o d    p ) ax=1 (\mod p) ax=1(modp) 且gcd(a,p)==1, 则a的模p的乘法逆元为x

费马小定理

a p − 1 ≡ 1 ( m o d    p ) ⟹ a ∗ a p − 2 a^{p-1}\equiv 1 (\mod p)\Longrightarrow a*a^{p-2} ap11(modp)aap2 ,p为质数. 显然 a p − 2 a^{p-2} ap2 就是a的模p的乘法逆元

分数取模

除法取模(p为质数) a b m o d    p = a b b p − 1 m o d    p = a ∗ b p − 2 m o d    p \frac{a}{b} \mod p =\frac{a}{b} b^{p-1} \mod p=a*b^{p-2} \mod p bamodp=babp1modp=abp2modp

  • 所以除b取模p,相当于乘b的模p的逆元

欧拉函数

ϕ ( x ) = a \phi (x)=a ϕ(x)=a, a为[1,x-1]中与x互质的个数

  • ϕ ( x ) = x ∏ i = 1 n ( 1 − 1 p i ) \phi(x)=x\prod\limits_{i=1}^n (1-\frac{1}{p_i}) ϕ(x)=xi=1n(1pi1) p i pi pi 为x的质因数
    • ϕ ( 1 ) = 1 \phi(1)=1 ϕ(1)=1
    • ϕ ( 0 ) = 0 \phi(0)=0 ϕ(0)=0
    • ϕ ( n ) = n − 1 \phi(n)=n-1 ϕ(n)=n1, n为素数
    • ϕ ( p k ) = p k ( 1 1 p ) \phi(p^k)=p^k(1\frac{1}{p}) ϕ(pk)=pk(1p1) p为素数
    • ϕ ( 10 ) = 10 ( 1 − 1 2 ) ( 1 − 1 5 ) = 4 \phi(10)=10(1-\frac{1}{2})(1-\frac{1}{5})=4 ϕ(10)=10(121)(151)=4 , 及1,3,7,9

欧拉定理:

a ϕ ( n ) ≡ 1 ( m o d    n ) a^{\phi(n)}\equiv 1(\mod n) aϕ(n)1(modn) , n与a互质

  • 如果n是质数那么 ϕ ( n ) = n − 1 \phi(n)=n-1 ϕ(n)=n1 ,既费马定理,所以费马小定理是欧拉定理的特殊情况
  • 证明. a ϕ ( n ) ≡ 1 m o d    n ⟹ a x 1 ∗ a x 2 ∗ . . . ∗ a x ϕ ( n ) ≡ x 1 ∗ x 2 ∗ . . . x ϕ ( n ) m o d    n a^{\phi(n)}\equiv 1 \mod n\Longrightarrow ax_1*ax_2*...*ax_{\phi(n)} \equiv x_1*x_2*...x_{\phi(n)} \mod n aϕ(n)1modnax1ax2...axϕ(n)x1x2...xϕ(n)modn, 既证明左边式子的余数就是右边式子. a与n互质,x与n互质,a*x 必然与n互质,并且模n后余数也互质(可以用gcd证明),然后证明 a x i ax_i axi取余后两两不相等:假设相等既 a x i = a x j m o d    n ⟹ a ( x i − x j ) m o d    n = 0 ax_i=ax_j \mod n \Longrightarrow a(x_i-x_j) \mod n=0 axi=axjmodna(xixj)modn=0,a与n互质, x i − x j < n x_i -x_j<n xixj<n, 所以上式子不可能成立. 左边式子余数既不想等而且与n互质,这不就是 x 1 , x 2 . . . x ϕ ( n ) x_1,x_2...x_{\phi(n)} x1,x2...xϕ(n)

a b = { a b % ϕ ( p ) g c d ( a , p ) = 1 a b g c d ( a , p ) ≠ 1 , b < ϕ ( p ) a b % ϕ ( p ) + ϕ ( p ) g c d ( a , p ) ≠ 1 , b > ϕ ( p ) a^b= \begin{cases} a^{b\%\phi(p)} &gcd(a,p)=1 \\ a^b &gcd(a,p)\neq 1,b<\phi(p)\\ a^{b\% \phi(p)+\phi(p)} &gcd (a,p) \neq1, b>\phi(p)\\ \end{cases} ab=ab%ϕ(p)abab%ϕ(p)+ϕ(p)gcd(a,p)=1gcd(a,p)=1,b<ϕ(p)gcd(a,p)=1,b>ϕ(p)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值