题目:
给定一个 n × n 的二维矩阵表示一个图像。
将图像顺时针旋转 90 度。
说明:
你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。
示例 1:
给定 matrix =
[
[1,2,3],
[4,5,6],
[7,8,9]
],
原地旋转输入矩阵,使其变为:
[
[7,4,1],
[8,5,2],
[9,6,3]
]
示例 2:
给定 matrix =
[
[ 5, 1, 9,11],
[ 2, 4, 8,10],
[13, 3, 6, 7],
[15,14,12,16]
],
原地旋转输入矩阵,使其变为:
[
[15,13, 2, 5],
[14, 3, 4, 1],
[12, 6, 8, 9],
[16, 7,10,11]
]
解答:
class Solution {
//方法一:先转置然后镜像对称
public void rotate(int[][] matrix) {
//先进行斜对角线变换[i][j] <--> [j][i]
for(int i = 0; i < matrix.length; i++){
//这个j一定是要从 i + 1开始!!
//我开始的时候是从0开始,一直出错
//如果i和j都是从0开始,执行一遍后,矩阵没有改变
for(int j = i + 1; j < matrix.length; j++){
int temp = matrix[i][j];
matrix[i][j] = matrix[j][i];
matrix[j][i] = temp;
}
}
//再进行关于中心线对称交换
for(int i = 0; i < matrix.length; i++){
for(int j = 0; j < matrix.length / 2; j++){
int temp = matrix[i][j];
matrix[i][j] = matrix[i][matrix.length - 1 - j];
matrix[i][matrix.length - 1 - j] = temp;
}
}
}
}