Codeforce 554 div2题解报告

本文深入解析了三道ACM竞赛题目,包括统计奇数偶数个数、转换数值为2^n-1形式以及寻找最小公倍数问题的最优解。通过具体的代码实现,展示了高效算法的设计与应用。

A题,统计奇数个数和偶数个数直接就出来了

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
#define up(i,a,n) for(int i=a;i<=n;i++)
const int maxn=1e5+10;
int arr[maxn],brr[maxn];
int main()
{
	int n,m;
	scanf("%d %d",&n,&m);
	int ji=0,ou=0,ji1=0,ou1=0;
	up(i,1,n)
	{
		int x;
		scanf("%d",&x);
		if(x%2==1)ji++;
		else ou++;
	}
	up(i,1,m)
	{
		int x;
		scanf("%d",&x);
		if(x%2==1)ji1++;
		else ou1++;
	}
	int num1=min(ji1,ou),num2=min(ou1,ji);
	int ans=num1+num2;
	printf("%d",ans);
	
}

B题,题目大概意思就是要经过一些步骤让n变成2^n-1的形式,转换为二进制的问题

例如 n为110001,则搜索到最高位1,然后把后面的值全都与1异或,就变成111110;然后+1,不断重复即可;

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
#define up(i,a,n) for(int i=a;i<=n;i++)
const int maxn=100;
vector<int>v;
int arr[maxn],ccnt;
int main()
{
	int n;
	scanf("%d",&n);
	for(int i=0;i<=25;i++)
	{
		if(n==pow(2,i)-1)
		{
			printf("0");
			return 0;
		}
	}
   int flag=0;
   int flag1=1;
   int ans=0;
   while(!flag)
   {
   ans++;
   
   if(flag1)
   {
   int cnt=31;
   flag1=0;
   while(!(n&(1<<cnt)))
   cnt--;
   while(n&(1<<cnt))
   cnt--;
   cnt++;
   arr[++ccnt]=cnt;
   int num=pow(2,cnt);
   num--;
   n=n^num;
   }
   else
   {
   	n+=1;
   	flag1=1;
   }
   for(int j=0;j<=25;j++)
   {
   	if(n==pow(2,j)-1)
   	{
   		flag=1;
   		break;
	}
   }
   }
   printf("%d\n",ans);
   up(i,1,ccnt)
   {
   	printf("%d ",arr[i]);
   }
}

C 题:找一个k,使得lcm(a+k,b+k)最小;

题解:观察到lcm(a+k,b+k)要最小,就需要求出b-a的所有因子,然后在因子中寻找k值。

比赛结束十分钟才修改完代码,很失败了,结束后一发过了。

用二分查找找出能够整除b-a的因子,并且比a大的最小整数,然后维护一个最小值和k值就好了。

#include<bits/stdc++.h>
using namespace std;
#define ll long long 
const int maxn=1e5+10;
ll arr[3],brr[maxn],bcnt;
ll gcd(ll a,ll b)
{
	return b?gcd(b,a%b):a;
}
int main()
{   
	ll a,b;
	scanf("%I64d %I64d",&arr[1],&arr[2]);
	sort(arr+1,arr+3);
	if(gcd(arr[1],arr[2])==arr[1])
	{
		printf("0");
		return 0;
	}
	ll c=arr[2]-arr[1];
	brr[++bcnt]=c;
	for(ll i=2;i<=sqrt(c);i++)
	{
		if(c%i==0)
		{
			brr[++bcnt]=i;
			if(c/i!=i)
			brr[++bcnt]=c/i;
		}
	}
	ll minn=0xf3f3f3f3f3f3f;
	int ans;
	for(ll i=1;i<=bcnt;i++)
	{
	ll l=1,r=1e9+10,cnt;
	while(l<r)
	{
		ll mid=(l+r)>>1;
		if(mid*brr[i]>=arr[1])
		{
			cnt=mid;
			r=mid;
		}
		else l=mid+1;
	}
	ll k=1ll*cnt*brr[i]-arr[1];
	ll num=(cnt*brr[i])*(cnt*brr[i]+c)/gcd((cnt*brr[i]),(cnt*brr[i]+c));
	if(minn>num)
	{
		ans=k;
		minn=num;
	}
    }
	cout<<ans;
	
}

 

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
### Codeforces 题目解法代码示例 对于给定的编程竞赛平台Codeforces上的题目,通常会提供多组测试数据来验证程序的正确性和效率。当处理包含括号匹配的问题时,可以采用栈结构或计数器方法来进行求解。 针对特定类型的括号序列问题,一种常见的策略是从左至右遍历字符串并维护两个变量:`dep`用于记录当前未配对的'('数量;每当遇到一个'('字符时,`dep`增加1。另一个变量`now`用来追踪问号 '?' 的数目[^4]。 下面是解决此类问题的一个Python实现例子: ```python def solve_parentheses_sequence(s: str) -> bool: dep, now = 0, 0 for char in s: if char == '(': dep += 1 elif char == ')': if dep > 0: dep -= 1 elif now > 0: now -= 1 else: return False elif char == '?': now += 1 # Check remaining unpaired '(' and '?' while dep > 0 and now > 0: dep -= 1 now -= 1 return dep == 0 # Example usage with multiple test cases as described in the problem statement. if __name__ == "__main__": import sys input = sys.stdin.read data = input().split() t = int(data[0]) # Number of test cases index = 1 results = [] for _ in range(t): sequence_length = int(data[index]) sequence = data[index + 1][:sequence_length] result = "YES" if solve_parentheses_sequence(sequence) else "NO" results.append(result) index += 2 print("\n".join(results)) ``` 此段代码实现了上述提到的方法,并能够处理多个测试实例。通过读取标准输入中的所有数据,解析每个测试案例的信息,调用`solve_parentheses_sequence()`函数判断给定序列是否可以通过适当替换问号形成合法的括号表达式,最后输出对应的结果列表。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值