POJ 2528

这道题想了很久,复习了一下线段树以及离散化。

 

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

  • Every candidate can place exactly one poster on the wall.
  • All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
  • The wall is divided into segments and the width of each segment is one byte.
  • Each poster must completely cover a contiguous number of wall segments.


They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers l i and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= l i <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered l i, l i+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1
5
1 4
2 6
8 10
3 4
7 10

Sample Output

4

题解:首先得想到逆序贴,这样就很好更新了。然后因为数据范围很大,所以需要离散化,最后就是离散化的技巧,在大于2的点之间加一个中间点。这题就是这样了,代码里说的很清楚了。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm> 
using namespace std;
const int maxn=1e4+10;
int tree[maxn<<4];
int n;
int li[maxn<<1],ri[maxn<<1];
int lsh[maxn<<2];
bool vis[maxn<<3]; 
void Pushdown(int rt)
{
	tree[rt<<1]=tree[rt<<1|1]=tree[rt];//向下节点分配 
	tree[rt]=-1;
}
void Update(int L,int R,int C,int l,int r,int rt)
{
	if(L<=l&&R>=r)//如果海报在该区间内 
	{
		tree[rt]=C;//把该区间的val变成海报的编号 
		return ;
	}
	if(tree[rt]!=-1)//不等于-1,代表之前被完全覆盖过了,但是再次进入这个判断。//就代表有另一张海报覆盖了这个节点区间的一部分。//那么就把这个节点向下更新,让它细分化。 
	Pushdown(rt);
	int mid=(l+r)>>1;
	if(mid>=R)Update(L,R,C,l,mid,rt<<1);//如果更新区间在左边,更新左节点 
	else if(L>mid)Update(L,R,C,mid+1,r,rt<<1|1);//在右边,更新右节点 
	else Update(L,mid,C,l,mid,rt<<1),Update(mid+1,R,C,mid+1,r,rt<<1|1);//否则的话,一定是夹在中间,在左右节点都有一部分范围,所以两边同时更新。 
}
int ans;
void query(int l,int r,int rt)
{
	if(!vis[tree[rt]]&&tree[rt]!=-1)
	{
		ans++;
		vis[tree[rt]]=1;
		return ;
	}
	if(l==r)return ;//如果查到了最小的点并且没有被覆盖,返回 
	if(tree[rt]!=-1)
	Pushdown(rt);
	int mid=(l+r)>>1;
	query(l,mid,rt<<1);
	query(mid+1,r,rt<<1|1);
}
int main()
{
	int t;
	scanf("%d",&t);
	while(t--)
	{
		scanf("%d",&n);
		memset(tree,-1,sizeof(tree));
		memset(vis,false,sizeof(vis));
		int tot=0;
		for(int i=0;i<n;i++)
		{
			scanf("%d %d",&li[i],&ri[i]);
			lsh[tot++]=li[i];
			lsh[tot++]=ri[i];
		}
		sort(lsh,lsh+tot);
		int mm=unique(lsh,lsh+tot)-lsh;
		int tt=mm;
		for(int i=1;i<tt;i++)
		{
			if(lsh[i]-lsh[i-1]>1)
			{
				lsh[mm++]=lsh[i-1]+1;//离散化的技巧
			}
		}
		sort(lsh,lsh+mm);
		for(int i=0;i<n;i++)
		{
			int x=lower_bound(lsh,lsh+mm,li[i])-lsh;//离散化操作之后的查找
			int y=lower_bound(lsh,lsh+mm,ri[i])-lsh;
			Update(x,y,i,0,mm-1,1);
		}
		ans=0;
		query(0,mm-1,1);
		printf("%d\n",ans);
	} 
}

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值