以下是 拉普拉斯反变换(Inverse Laplace Transform) 的详细求解方法,适用于工程和信号处理中的常见问题,重点介绍 部分分式分解法 和 查表法。
部分分式分解法求拉普拉斯逆变换的详细步骤
1. 将有理分式化为标准形式
将给定的拉普拉斯变换 ( F(s) ) 表示为分子多项式 ( N(s) ) 与分母多项式 ( D(s) ) 的比:
F
(
s
)
=
N
(
s
)
D
(
s
)
F(s) = \frac{N(s)}{D(s)}
F(s)=D(s)N(s)
确保分子次数低于分母次数。若分子次数 ≥ 分母次数,需通过多项式除法分解为多项式与真分式之和。
2. 因式分解分母多项式
将分母 ( D(s) ) 分解为一次或二次不可约因式的乘积:
D
(
s
)
=
(
s
+
p
1
)
(
s
+
p
2
)
k
⋯
(
s
2
+
a
s
+
b
)
m
D(s) = (s + p_1)(s + p_2)^k \cdots (s^2 + a s + b)^m
D(s)=(s+p1)(s+p2)k⋯(s2+as+b)m
其中:
- s + p i s + p_i s+pi 为单实根或重根。
- s 2 + a s + b s^2 + a s + b s2+as+b为二次不可约因式(对应复共轭根)。
3. 根据根类型展开为部分分式
按分母因式的不同形式,将 F ( s ) F(s) F(s) 拆分为简单分式的和:
(a) 单实根 s = − p s = -p s=−p
对应项为:
A
s
+
p
\frac{A}{s + p}
s+pA
示例:
F
(
s
)
=
3
(
s
+
1
)
(
s
+
2
)
=
A
s
+
1
+
B
s
+
2
F(s) = \frac{3}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2}
F(s)=(s+1)(s+2)3=s+1A+s+2B
(b) 重根 s = − p s = -p s=−p(k 重根)
对应项为:
A
1
s
+
p
+
A
2
(
s
+
p
)
2
+
⋯
+
A
k
(
s
+
p
)
k
\frac{A_1}{s + p} + \frac{A_2}{(s + p)^2} + \cdots + \frac{A_k}{(s + p)^k}
s+pA1+(s+p)2A2+⋯+(s+p)kAk
示例:
F
(
s
)
=
s
+
2
(
s
+
3
)
3
=
A
s
+
3
+
B
(
s
+
3
)
2
+
C
(
s
+
3
)
3
F(s) = \frac{s+2}{(s+3)^3} = \frac{A}{s+3} + \frac{B}{(s+3)^2} + \frac{C}{(s+3)^3}
F(s)=(s+3)3s+2=s+3A+(s+3)2B+(s+3)3C
© 复共轭根 s 2 + a s + b = 0 s^2 + a s + b = 0 s2+as+b=0
对应项为:
A
s
+
B
s
2
+
a
s
+
b
\frac{A s + B}{s^2 + a s + b}
s2+as+bAs+B
示例:
F
(
s
)
=
2
s
+
1
s
2
+
4
s
+
13
=
A
s
+
B
s
2
+
4
s
+
13
F(s) = \frac{2s + 1}{s^2 + 4s + 13} = \frac{A s + B}{s^2 + 4s + 13}
F(s)=s2+4s+132s+1=s2+4s+13As+B
4. 确定部分分式系数
通过代数方法求解各系数 A , B , C , … A, B, C, \dots A,B,C,…。
(a) 代入特定 s s s 值法
- 单实根:令
s
=
−
p
s = -p
s=−p,消去其他项,直接解系数。
示例:
3 ( s + 1 ) ( s + 2 ) = A s + 1 + B s + 2 \frac{3}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2} (s+1)(s+2)3=s+1A+s+2B
令 s = − 1 s = -1 s=−1:
3 = A ( 1 ) + B ( 0 ) ⇒ A = 3 3 = A(1) + B(0) \Rightarrow A = 3 3=A(1)+B(0)⇒A=3
令 s = − 2 s = -2 s=−2:
3 = A ( 0 ) + B ( − 1 ) ⇒ B = − 3 3 = A(0) + B(-1) \Rightarrow B = -3 3=A(0)+B(−1)⇒B=−3
(b) 比较系数法
将等式两边通分后,展开并比较多项式系数。
示例(重根):
s
+
2
(
s
+
3
)
3
=
A
s
+
3
+
B
(
s
+
3
)
2
+
C
(
s
+
3
)
3
\frac{s+2}{(s+3)^3} = \frac{A}{s+3} + \frac{B}{(s+3)^2} + \frac{C}{(s+3)^3}
(s+3)3s+2=s+3A+(s+3)2B+(s+3)3C
通分后:
s
+
2
=
A
(
s
+
3
)
2
+
B
(
s
+
3
)
+
C
s + 2 = A(s+3)^2 + B(s+3) + C
s+2=A(s+3)2+B(s+3)+C
展开右边:
A
s
2
+
(
6
A
+
B
)
s
+
(
9
A
+
3
B
+
C
)
A s^2 + (6A + B)s + (9A + 3B + C)
As2+(6A+B)s+(9A+3B+C)
比较系数:
{
A
=
0
(
因左边无
s
2
项
)
6
A
+
B
=
1
⇒
B
=
1
9
A
+
3
B
+
C
=
2
⇒
3
+
C
=
2
⇒
C
=
−
1
\begin{cases} A = 0 \quad (\text{因左边无 } s^2 \text{ 项}) \\ 6A + B = 1 \Rightarrow B = 1 \\ 9A + 3B + C = 2 \Rightarrow 3 + C = 2 \Rightarrow C = -1 \end{cases}
⎩
⎨
⎧A=0(因左边无 s2 项)6A+B=1⇒B=19A+3B+C=2⇒3+C=2⇒C=−1
© 复根的特殊处理
若分母为
s
2
+
a
s
+
b
s^2 + a s + b
s2+as+b,可配方法或直接查表转换。
示例:
2
s
+
1
s
2
+
4
s
+
13
=
2
s
+
1
(
s
+
2
)
2
+
9
\frac{2s + 1}{s^2 + 4s + 13} = \frac{2s + 1}{(s + 2)^2 + 9}
s2+4s+132s+1=(s+2)2+92s+1
转化为标准形式
(
s
+
a
)
(
s
+
a
)
2
+
ω
2
\frac{(s + a)}{(s + a)^2 + \omega^2}
(s+a)2+ω2(s+a):
=
2
⋅
(
s
+
2
)
(
s
+
2
)
2
+
3
2
−
3
(
s
+
2
)
2
+
3
2
= 2 \cdot \frac{(s + 2)}{(s + 2)^2 + 3^2} - \frac{3}{(s + 2)^2 + 3^2}
=2⋅(s+2)2+32(s+2)−(s+2)2+323
对应时域函数:
f
(
t
)
=
2
e
−
2
t
cos
(
3
t
)
−
e
−
2
t
sin
(
3
t
)
f(t) = 2 e^{-2t} \cos(3t) - e^{-2t} \sin(3t)
f(t)=2e−2tcos(3t)−e−2tsin(3t)
5. 查表求各分式的逆变换
对每个简单分式应用已知的拉普拉斯变换对:
分式形式 | 时域函数 f ( t ) f(t) f(t) |
---|---|
1 s \frac{1}{s} s1 | 1 1 1 |
n ! s n + 1 \frac{n!}{s^{n+1}} sn+1n! | t n t^{n} tn |
1 s + p \frac{1}{s + p} s+p1 | e − p t e^{-pt} e−pt |
1 ( s + p ) n \frac{1}{(s + p)^n} (s+p)n1 | t n − 1 ( n − 1 ) ! e − p t \frac{t^{n-1}}{(n-1)!} e^{-pt} (n−1)!tn−1e−pt |
ω ( s + a ) 2 + ω 2 \frac{\omega}{(s + a)^2 + \omega^2} (s+a)2+ω2ω | e − a t sin ( ω t ) e^{-at} \sin(\omega t) e−atsin(ωt) |
s + a ( s + a ) 2 + ω 2 \frac{s + a}{(s + a)^2 + \omega^2} (s+a)2+ω2s+a | e − a t cos ( ω t ) e^{-at} \cos(\omega t) e−atcos(ωt) |
a s 2 + a 2 \frac{a}{s^2 + a^2} s2+a2a | sin ( a t ) \sin(at) sin(at) |
s s 2 + a 2 \frac{s}{s^2 + a^2} s2+a2s | cos ( a t ) \cos(at) cos(at) |
6. 组合所有分式的逆变换
将各分式的时域函数相加,得到完整的原函数 f ( t ) f(t) f(t)。
完整示例
问题:求 F ( s ) = s 2 + 3 s + 5 ( s + 1 ) ( s + 2 ) 2 F(s) = \frac{s^2 + 3s + 5}{(s+1)(s+2)^2} F(s)=(s+1)(s+2)2s2+3s+5的拉普拉斯逆变换。
步骤:
-
分解分母:
D ( s ) = ( s + 1 ) ( s + 2 ) 2 D(s) = (s+1)(s+2)^2 D(s)=(s+1)(s+2)2 -
展开为部分分式:
s 2 + 3 s + 5 ( s + 1 ) ( s + 2 ) 2 = A s + 1 + B s + 2 + C ( s + 2 ) 2 \frac{s^2 + 3s + 5}{(s+1)(s+2)^2} = \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{(s+2)^2} (s+1)(s+2)2s2+3s+5=s+1A+s+2B+(s+2)2C -
确定系数:
- 令
s
=
−
1
s = -1
s=−1:
( − 1 ) 2 + 3 ( − 1 ) + 5 = A ( 1 ) 2 ⇒ A = 3 (-1)^2 + 3(-1) + 5 = A(1)^2 \Rightarrow A = 3 (−1)2+3(−1)+5=A(1)2⇒A=3 - 令
s
=
−
2
s = -2
s=−2:
( − 2 ) 2 + 3 ( − 2 ) + 5 = C ( − 1 ) ⇒ C = − 3 (-2)^2 + 3(-2) + 5 = C(-1) \Rightarrow C = -3 (−2)2+3(−2)+5=C(−1)⇒C=−3 - 比较
s
2
s^2
s2 项系数:
1 = A + B ⇒ B = − 2 1 = A + B \Rightarrow B = -2 1=A+B⇒B=−2
- 令
s
=
−
1
s = -1
s=−1:
-
查表求逆变换:
f ( t ) = 3 e − t − 2 e − 2 t − 3 t e − 2 t f(t) = 3e^{-t} - 2e^{-2t} - 3te^{-2t} f(t)=3e−t−2e−2t−3te−2t
通过系统应用这些步骤,可高效求解复杂有理函数的拉普拉斯逆变换。