求解拉普拉斯逆变换(部分分式分解法和查表法)

以下是 拉普拉斯反变换(Inverse Laplace Transform) 的详细求解方法,适用于工程和信号处理中的常见问题,重点介绍 部分分式分解法 和 查表法。

部分分式分解法求拉普拉斯逆变换的详细步骤


1. 将有理分式化为标准形式

将给定的拉普拉斯变换 ( F(s) ) 表示为分子多项式 ( N(s) ) 与分母多项式 ( D(s) ) 的比:
F ( s ) = N ( s ) D ( s ) F(s) = \frac{N(s)}{D(s)} F(s)=D(s)N(s)
确保分子次数低于分母次数。若分子次数 ≥ 分母次数,需通过多项式除法分解为多项式与真分式之和。


2. 因式分解分母多项式

将分母 ( D(s) ) 分解为一次或二次不可约因式的乘积:
D ( s ) = ( s + p 1 ) ( s + p 2 ) k ⋯ ( s 2 + a s + b ) m D(s) = (s + p_1)(s + p_2)^k \cdots (s^2 + a s + b)^m D(s)=(s+p1)(s+p2)k(s2+as+b)m
其中:

  • s + p i s + p_i s+pi 为单实根或重根。
  • s 2 + a s + b s^2 + a s + b s2+as+b为二次不可约因式(对应复共轭根)。

3. 根据根类型展开为部分分式

按分母因式的不同形式,将 F ( s ) F(s) F(s) 拆分为简单分式的和:

(a) 单实根 s = − p s = -p s=p

对应项为:
A s + p \frac{A}{s + p} s+pA
示例
F ( s ) = 3 ( s + 1 ) ( s + 2 ) = A s + 1 + B s + 2 F(s) = \frac{3}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2} F(s)=(s+1)(s+2)3=s+1A+s+2B

(b) 重根 s = − p s = -p s=p(k 重根)

对应项为:
A 1 s + p + A 2 ( s + p ) 2 + ⋯ + A k ( s + p ) k \frac{A_1}{s + p} + \frac{A_2}{(s + p)^2} + \cdots + \frac{A_k}{(s + p)^k} s+pA1+(s+p)2A2++(s+p)kAk
示例
F ( s ) = s + 2 ( s + 3 ) 3 = A s + 3 + B ( s + 3 ) 2 + C ( s + 3 ) 3 F(s) = \frac{s+2}{(s+3)^3} = \frac{A}{s+3} + \frac{B}{(s+3)^2} + \frac{C}{(s+3)^3} F(s)=(s+3)3s+2=s+3A+(s+3)2B+(s+3)3C

© 复共轭根 s 2 + a s + b = 0 s^2 + a s + b = 0 s2+as+b=0

对应项为:
A s + B s 2 + a s + b \frac{A s + B}{s^2 + a s + b} s2+as+bAs+B
示例
F ( s ) = 2 s + 1 s 2 + 4 s + 13 = A s + B s 2 + 4 s + 13 F(s) = \frac{2s + 1}{s^2 + 4s + 13} = \frac{A s + B}{s^2 + 4s + 13} F(s)=s2+4s+132s+1=s2+4s+13As+B


4. 确定部分分式系数

通过代数方法求解各系数 A , B , C , … A, B, C, \dots A,B,C,

(a) 代入特定 s s s 值法
  • 单实根:令 s = − p s = -p s=p,消去其他项,直接解系数。
    示例
    3 ( s + 1 ) ( s + 2 ) = A s + 1 + B s + 2 \frac{3}{(s+1)(s+2)} = \frac{A}{s+1} + \frac{B}{s+2} (s+1)(s+2)3=s+1A+s+2B
    s = − 1 s = -1 s=1:
    3 = A ( 1 ) + B ( 0 ) ⇒ A = 3 3 = A(1) + B(0) \Rightarrow A = 3 3=A(1)+B(0)A=3
    s = − 2 s = -2 s=2:
    3 = A ( 0 ) + B ( − 1 ) ⇒ B = − 3 3 = A(0) + B(-1) \Rightarrow B = -3 3=A(0)+B(1)B=3
(b) 比较系数法

将等式两边通分后,展开并比较多项式系数。
示例(重根)
s + 2 ( s + 3 ) 3 = A s + 3 + B ( s + 3 ) 2 + C ( s + 3 ) 3 \frac{s+2}{(s+3)^3} = \frac{A}{s+3} + \frac{B}{(s+3)^2} + \frac{C}{(s+3)^3} (s+3)3s+2=s+3A+(s+3)2B+(s+3)3C
通分后:
s + 2 = A ( s + 3 ) 2 + B ( s + 3 ) + C s + 2 = A(s+3)^2 + B(s+3) + C s+2=A(s+3)2+B(s+3)+C
展开右边:
A s 2 + ( 6 A + B ) s + ( 9 A + 3 B + C ) A s^2 + (6A + B)s + (9A + 3B + C) As2+(6A+B)s+(9A+3B+C)
比较系数:
{ A = 0 ( 因左边无  s 2  项 ) 6 A + B = 1 ⇒ B = 1 9 A + 3 B + C = 2 ⇒ 3 + C = 2 ⇒ C = − 1 \begin{cases} A = 0 \quad (\text{因左边无 } s^2 \text{ 项}) \\ 6A + B = 1 \Rightarrow B = 1 \\ 9A + 3B + C = 2 \Rightarrow 3 + C = 2 \Rightarrow C = -1 \end{cases} A=0(因左边无 s2 )6A+B=1B=19A+3B+C=23+C=2C=1

© 复根的特殊处理

若分母为 s 2 + a s + b s^2 + a s + b s2+as+b,可配方法或直接查表转换。
示例
2 s + 1 s 2 + 4 s + 13 = 2 s + 1 ( s + 2 ) 2 + 9 \frac{2s + 1}{s^2 + 4s + 13} = \frac{2s + 1}{(s + 2)^2 + 9} s2+4s+132s+1=(s+2)2+92s+1
转化为标准形式 ( s + a ) ( s + a ) 2 + ω 2 \frac{(s + a)}{(s + a)^2 + \omega^2} (s+a)2+ω2(s+a)
= 2 ⋅ ( s + 2 ) ( s + 2 ) 2 + 3 2 − 3 ( s + 2 ) 2 + 3 2 = 2 \cdot \frac{(s + 2)}{(s + 2)^2 + 3^2} - \frac{3}{(s + 2)^2 + 3^2} =2(s+2)2+32(s+2)(s+2)2+323
对应时域函数:
f ( t ) = 2 e − 2 t cos ⁡ ( 3 t ) − e − 2 t sin ⁡ ( 3 t ) f(t) = 2 e^{-2t} \cos(3t) - e^{-2t} \sin(3t) f(t)=2e2tcos(3t)e2tsin(3t)


5. 查表求各分式的逆变换

对每个简单分式应用已知的拉普拉斯变换对:

分式形式时域函数 f ( t ) f(t) f(t)
1 s \frac{1}{s} s1 1 1 1
n ! s n + 1 \frac{n!}{s^{n+1}} sn+1n! t n t^{n} tn
1 s + p \frac{1}{s + p} s+p1 e − p t e^{-pt} ept
1 ( s + p ) n \frac{1}{(s + p)^n} (s+p)n1 t n − 1 ( n − 1 ) ! e − p t \frac{t^{n-1}}{(n-1)!} e^{-pt} (n1)!tn1ept
ω ( s + a ) 2 + ω 2 \frac{\omega}{(s + a)^2 + \omega^2} (s+a)2+ω2ω e − a t sin ⁡ ( ω t ) e^{-at} \sin(\omega t) eatsin(ωt)
s + a ( s + a ) 2 + ω 2 \frac{s + a}{(s + a)^2 + \omega^2} (s+a)2+ω2s+a e − a t cos ⁡ ( ω t ) e^{-at} \cos(\omega t) eatcos(ωt)
a s 2 + a 2 \frac{a}{s^2 + a^2} s2+a2a sin ⁡ ( a t ) \sin(at) sin(at)
s s 2 + a 2 \frac{s}{s^2 + a^2} s2+a2s cos ⁡ ( a t ) \cos(at) cos(at)

6. 组合所有分式的逆变换

将各分式的时域函数相加,得到完整的原函数 f ( t ) f(t) f(t)


完整示例

问题:求 F ( s ) = s 2 + 3 s + 5 ( s + 1 ) ( s + 2 ) 2 F(s) = \frac{s^2 + 3s + 5}{(s+1)(s+2)^2} F(s)=(s+1)(s+2)2s2+3s+5的拉普拉斯逆变换。

步骤

  1. 分解分母
    D ( s ) = ( s + 1 ) ( s + 2 ) 2 D(s) = (s+1)(s+2)^2 D(s)=(s+1)(s+2)2

  2. 展开为部分分式
    s 2 + 3 s + 5 ( s + 1 ) ( s + 2 ) 2 = A s + 1 + B s + 2 + C ( s + 2 ) 2 \frac{s^2 + 3s + 5}{(s+1)(s+2)^2} = \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{(s+2)^2} (s+1)(s+2)2s2+3s+5=s+1A+s+2B+(s+2)2C

  3. 确定系数

    • s = − 1 s = -1 s=1:
      ( − 1 ) 2 + 3 ( − 1 ) + 5 = A ( 1 ) 2 ⇒ A = 3 (-1)^2 + 3(-1) + 5 = A(1)^2 \Rightarrow A = 3 (1)2+3(1)+5=A(1)2A=3
    • s = − 2 s = -2 s=2:
      ( − 2 ) 2 + 3 ( − 2 ) + 5 = C ( − 1 ) ⇒ C = − 3 (-2)^2 + 3(-2) + 5 = C(-1) \Rightarrow C = -3 (2)2+3(2)+5=C(1)C=3
    • 比较 s 2 s^2 s2 项系数:
      1 = A + B ⇒ B = − 2 1 = A + B \Rightarrow B = -2 1=A+BB=2
  4. 查表求逆变换
    f ( t ) = 3 e − t − 2 e − 2 t − 3 t e − 2 t f(t) = 3e^{-t} - 2e^{-2t} - 3te^{-2t} f(t)=3et2e2t3te2t


通过系统应用这些步骤,可高效求解复杂有理函数的拉普拉斯逆变换。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值