UA MATH571B 试验设计III 单因素试验设计3

本文介绍了在单因素ANOVA模型中进行对比(Contrast)分析的方法,包括常数对比的t检验和正交对比的概念。接着讨论了多个对比的联合推断,如Bonferroni调整和Scheffe方法。此外,还详细阐述了配对比较的Tukey检验、Fisher LSD方法和Dunnett方法,这些方法用于比较不同处理组的均值差异。
摘要由CSDN通过智能技术生成

在单因素ANOVA模型中,有时需要对treatment effect做一些其他比较。以下方法就是用来各种不同的比较的。

Contrast

在均值模型中
y i j = μ i + ϵ i j , ϵ i j ∼ i i d N ( 0 , σ 2 ) i = 1 , 2 , ⋯   , a ; j = 1 , 2 , ⋯   , n y_{ij} = \mu_i+ \epsilon_{ij},\epsilon_{ij}\sim_{iid}N(0,\sigma^2)\\ i = 1,2,\cdots,a; j=1,2,\cdots,n yij=μi+ϵij,ϵijiidN(0,σ2)i=1,2,,a;j=1,2,,n
假设要做下列假设检验
H 0 : L = ∑ i = 1 a c i μ i = L 0 H_0:L = \sum_{i=1}^a c_i \mu_i=L_0 H0:L=i=1aciμi=L0
其中 c i c_i ci可以是任何常数。先考虑 L L L的估计量
L ^ = ∑ i = 1 a c i μ ^ i = ∑ i = 1 a c i y ˉ i . \hat{L} = \sum_{i=1}^a c_i \hat{\mu}_i = \sum_{i=1}^a c_i \bar{y}_{i.} L^=i=1aciμ^i=i=1aciyˉi.
显然这个估计量是正态的,其方差为
V a r ( L ^ ) = ∑ i = 1 a c i 2 V a r ( y ˉ i . ) = ∑ i = 1 a c i 2 σ 2 n i Var(\hat{L}) = \sum_{i=1}^a c_i^2 Var(\bar{y}_{i.}) =\sum_{i=1}^a c_i^2 \frac{\sigma^2}{n_i} Var(L^)=i=1aci2Var(yˉi.)=i=1aci2niσ2
其中 σ 2 \sigma^2 σ2的估计量是 M S E MSE MSE,由此可以构造t统计量
L ^ − L 0 M S E ∑ i = 1 a c i 2 n i ∼ t ( N − a ) \frac{\hat{L}-L_0}{\sqrt{MSE \sum_{i=1}^a \frac{c_i^2 }{n_i}}} \sim t(N-a) MSEi=1anici2 L^L0t(Na)
用t检验来做。
在上面的线性组合中,如果 ∑ i = 1 a c i = 0 \sum_{i=1}^a c_i=0 i=1aci=0,则称这样的线性组合为一个contrast,定义此时的线性组合为 Γ = ∑ i = 1 a c i μ i \Gamma = \sum_{i=1}^a c_i\mu_i Γ=i=1aciμi,通常关于constrast的检验是 H 0 : Γ = 0 H_0:\Gamma=0 H0:Γ=0,这个检验也用t检验做。如果两个contrast的系数 c i c_i ci d i d_i di满足
∑ i = 1 a c i d i n i = 0 \sum_{i=1}^a c_id_in_i=0 i=1acidini=0
则称这两个contrast正交。需要注意的是contrast是在试验之前要设计好的,避免做了试验拿到了数据之后再来选哪些检验能显著!

多个contrast的联合推断

假设要做多个contrast的假设检验
H 0 : Γ 1 = Γ 10 , ⋯   , Γ m = Γ m 0 H_0:\Gamma_1=\Gamma_{10},\cdots,\Gamma_m=\Gamma_{m0} H0:Γ1=Γ10,,Γm=Γm0
假设 C I 1 , ⋯   , C I m CI_1,\cdots,CI_m CI1,,CIm是每一个contrast的 100 ( 1 − α ) % 100(1-\alpha)\% 100(1α)%置信区间,则
P ( Γ i 0 ∉ C I i ∣ H 0 ) = α P(\Gamma_{i0} \notin CI_i|H_0)=\alpha P(Γi0/CIiH0)=α
但要要拒绝原假设,只需要任一 Γ i 0 ∉ C I i \Gamma_{i0} \notin CI_i Γi0/CIi,根据Bonferroni不等式,假设要让在原假设成立时拒绝原假设的概率保持为 α \alpha α,需要 P ( Γ i 0 ∉ C I i ∣ H 0 ) = α ′ P(\Gamma_{i0} \notin CI_i|H_0)=\alpha' P(Γi0/CIiH0)=α
P ( a t   l e a s t   o n e   i   Γ i 0 ∉ C I i ∣ H 0 ) ≤ ∑ i = 1 m P ( Γ i 0 ∉ C I i ∣ H 0 ) = m α ′ P(at\ least\ one\ i\, \Gamma_{i0} \notin CI_i|H_0) \le \sum_{i=1}^m P(\Gamma_{i0} \notin CI_i|H_0) = m\alpha' P(at least one iΓi0/CIiH0)i=1mP(Γi0/CIiH0)=mα
近似地可以有 α ′ = α / m \alpha'=\alpha/m α=α/m。如果这些 c o n s t r a s t constrast constrast是正交了,它们的估计量就是独立的,因此上式可以直接取等,并且可以用一个ANOVA同时做这个检验。 α ′ = α / m \alpha'=\alpha/m α=α/m表明如果希望假阳性是 α \alpha α,那么每一个置信区间 C I i CI_i CIi需要用置信水平 100 ( 1 − α / m ) % 100(1-\alpha/m)\% 100(1α/m)%来构造,这种做联合推断的调整叫Bonferroni调整。
另一种做联合推断的方法是Scheffe方法。根据Scheffe方法构造的单个contrast的置信区间为
Γ ^ i − ( a − 1 ) F α , a − 1 , N − a M S E ∑ i = 1 a c i 2 n i ≤ Γ i ≤ Γ ^ i + ( a − 1 ) F α , a − 1 , N − a M S E ∑ i = 1 a c i 2 n i ≤ Γ i \hat{\Gamma}_i - \sqrt{(a-1)F_{\alpha,a-1,N-a}} \sqrt{MSE \sum_{i=1}^a \frac{c_i^2 }{n_i}}\le \Gamma_i \le \hat{\Gamma}_i + \sqrt{(a-1)F_{\alpha,a-1,N-a}} \sqrt{MSE \sum_{i=1}^a \frac{c_i^2 }{n_i}}\le \Gamma_i Γ^i(a1)Fα,a1,Na MSEi=1anici2 ΓiΓ^i+(a1)Fα,a1,Na MSEi=1anici2 Γi
如果 m m m比较大就用Scheffe,如果 m m m比较小就用Bonferroni。

配对比较

假设要对所有的treatment group mean做两两比较, ∀ i ≠ j \forall i \ne j i=j
H 0 : μ i = μ j H a : μ i ≠ μ j H_0: \mu_i = \mu_j \\ H_a: \mu_i \ne \mu_j H0:μi=μjHa:μi=μj

Tukey检验

如果试验是平衡的,可以用Tukey检验,如果试验是不平衡的,可以用Tukey-Kramer方法。因为思路都一样,这里介绍Tukey检验。首先构造
q = y ˉ m a x − y ˉ m i n M S E / n q=\frac{\bar{y}_{max}-\bar{y}_{min}}{\sqrt{MSE/n}} q=MSE/n yˉmaxyˉmin
其中 y ˉ m a x \bar{y}_{max} yˉmax y ˉ m i n \bar{y}_{min} yˉmin是待比较的 p p p个组内平均的最大值和最小值,它的分布可以查表,记为 q α ( p , f ) q_{\alpha}(p,f) qα(p,f),其中 α \alpha α是百分比, q α q_{\alpha} qα代表上分位点, f f f M S E MSE MSE的自由度。Tukey检验给出的 μ i − μ j \mu_i-\mu_j μiμj的置信区间边界
y ˉ i . − y ˉ j . ± q α ( a , f ) M S E / n \bar{y}_{i.} - \bar{y}_{j.} \pm q_{\alpha}(a,f)\sqrt{MSE/n} yˉi.yˉj.±qα(a,f)MSE/n

Fisher Least Significant Difference方法

因为两总体比较 μ i − μ j \mu_i-\mu_j μiμj的置信区间边界可以写成
y ˉ i . − y ˉ j . ± t α / 2 , N − a M S E ( 1 n i + 1 n j ) \bar{y}_{i.} - \bar{y}_{j.} \pm t_{\alpha/2,N-a}\sqrt{MSE(\frac{1}{n_i}+\frac{1}{n_j})} yˉi.yˉj.±tα/2,NaMSE(ni1+nj1)
定义
L S D = t α / 2 , N − a M S E ( 1 n i + 1 n j ) LSD = t_{\alpha/2,N-a}\sqrt{MSE(\frac{1}{n_i}+\frac{1}{n_j})} LSD=tα/2,NaMSE(ni1+nj1)
为Least Significant Difference,代表置信区间的长度。用这个值进行比较的过程是计算 ∣ y ˉ i . − y ˉ j . ∣ |\bar{y}_{i.} - \bar{y}_{j.}| yˉi.yˉj.,如果比LSD大就认为 μ i − μ j \mu_i-\mu_j μiμj显著异于0。

Dunnett方法

如果有一组是对照组,那么实验组的结果都要与它比较。假设对照组是第 a a a组,则需要做的假设检验是 ∀ i = 1 , ⋯   , a − 1 \forall i=1,\cdots,a-1 i=1,,a1
H 0 : μ i = μ a H a : μ i ≠ μ a H_0: \mu_i = \mu_a \\ H_a:\mu_i \ne \mu_a H0:μi=μaHa:μi=μa
Dunnett方法与Fisher LSD比较像,都是给一个判别值判断均值的差是否超过了判别值。Dunnett方法的判别值是
d α ( a − 1 , N − a ) M S E ( 1 n i + 1 n j ) d_{\alpha}(a-1,N-a)\sqrt{MSE(\frac{1}{n_i}+\frac{1}{n_j})} dα(a1,Na)MSE(ni1+nj1)
需要注意的是 α \alpha α是这 a − 1 a-1 a1个假设检验的联合type I error。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值