组合恒等式7 组合变换的互逆公式 简介与简单例子

本文介绍了组合变换中的互逆公式,通过双重求和的交换性质,证明了组合恒等式,并利用这些公式推导新的恒等式。例如,展示了如何利用互逆公式证明关于排列组合的特定求和结果。
摘要由CSDN通过智能技术生成

类似离散序列的Z变换,我们也可以定义以组合数为系数的组合变换,一个直观的例子是
b k = ∑ i = 0 k ( − 1 ) i C k i a i b_k = \sum_{i=0}^k (-1)^i C_k^i a_i bk=i=0k(1)iCkiai

b k b_k bk就是关于 a k a_k ak的一个组合变换,这个组合变换有一个很重要的性质,就是
a k = ∑ i = 0 k ( − 1 ) i C k i b i a_k = \sum_{i=0}^k (-1)^i C_k^i b_i ak=i=0k(1)iCkibi

也就是对 b k b_k bk再做一次组合变换就又变回 a k a_k ak了,称这样的一对组合变换叫做组合变换的互逆公式,基于这种组合变换的互逆公式,可以从现有的组合恒等式得到更多的组合恒等式,这一讲就以证明这对互逆公式作为开始。

双重求和可以交换次序

二重积分计算有一个Fubini定理,告诉我们二重积分可以交换积分次序,在离散领域,双重求和也具有类似的性质。考虑二重求和
S = ∑ k = 0 n ∑ l = 0 k x k l S = \sum_{k=0}^n \sum_{l=0}^k x_{kl} S=k=0nl=0kxkl

这个求和可以理解成对矩阵 [ x k l ] ( n + 1 ) × ( n + 1 ) [x_{kl}]_{(n+1)\times (n+1)} [xkl](n+1)×(n+1)的下三角部分所有元素求和,其中 ∑ l = 0 k x k l \sum_{l=0}^k x_{kl} l=0kxkl表示第 k + 1 k+1 k+1行的和;当然还有另一种写法,我们也可以先写出第 l l l列的和 ∑ k = l n x k l \sum_{k=l}^n x_{kl} k=lnxkl,则
S = ∑ l = 0 n ∑ k = l n x k l S = \sum_{l=0}^n \sum_{k=l}^n x_{kl} S=l=0nk=lnxkl

这样就得到了双重求和可以交换次序的结论:
∑ k = 0 n ∑ l = 0 k x k l = ∑ l = 0 n ∑ k = l n x k l \sum_{k=0}^n \sum_{l=0}^k x_{kl}=\sum_{l=0}^n \sum_{k=l}^n x_{kl} k=0nl=0kxkl=l=0nk=ln

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值