UA MATH567 高维统计III 随机矩阵6 亚高斯矩阵的范数

本文深入探讨了随机矩阵的范数特性,特别是当矩阵元素为亚高斯随机变量时。通过建立算子范数与亚高斯随机变量之间的关系,证明了矩阵范数的尾部概率具有亚高斯性。此外,还特别讨论了对称矩阵的情况,展示了如何利用矩阵的对称性来推导其范数的概率分布。
摘要由CSDN通过智能技术生成

UA MATH567 高维统计III 随机矩阵6 亚高斯矩阵的范数

在前五讲的理论基础上,我们现在开始正式讨论随机矩阵。假设 A A A是一个 m × n m \times n m×n的随机矩阵,它的元素 A i j A_{ij} Aij是互相独立的零均值的亚高斯随机变量,关于它的范数有下面的结论

随机矩阵的范数 K = max ⁡ i , j ∥ A i j ∥ ψ 2 K=\max_{i,j}\left\| A_{ij} \right\|_{\psi_2} K=maxi,jAijψ2, ∀ t > 0 \forall t>0 t>0
P ( ∥ A ∥ ≲ K ( m + n + t ) ) ≥ 1 − 2 e − t 2 P(\left\| A\right\| \lesssim K(\sqrt{m}+\sqrt{n}+t)) \ge 1-2e^{-t^2} P(AK(m +n +t))12et2

这个结果说明矩阵 A A A的范数的尾部概率也具有亚高斯性。如果 A A A n × n n \times n n×n的对称阵,则
P ( ∥ A ∥ ≲ K ( n + t ) ) ≥ 1 − 4 e − t 2 P(\left\| A\right\| \lesssim K(\sqrt{n}+t)) \ge 1-4e^{-t^2} P(AK(n +t))14et2

证明

第一步,我们先考虑一下算子范数,
∥ A ∥ = max ⁡ x ∈ S n − 1 y ∈ S m − 1 ⟨ A x , y ⟩ \left\| A \right\| = \max_{x \in S^{n-1} \\ y \in S^{m-1}}\langle Ax,y\rangle A=xSn1ySm1maxAx,y

存在 x ∈ S n − 1 , y ∈ S m − 1 x \in S^{n-1},y \in S^{m-1} xSn1,ySm1使得 ∥ A ∥ = ⟨ A x , y ⟩ \left\| A \right\|=\langle Ax,y\rangle A=Ax,y,假设 N \mathcal{N} N S n − 1 S^{n-1} Sn1的一个 ϵ \epsilon ϵ-net(根据第四讲的讨论,我们总是可以用一个球框住这样的集网,因此不失一般性,我们可以构造cardinality满足 ∣ N ∣ < 9 n , ∣ M ∣ < 9 m |\mathcal{N}|<9^n,|\mathcal{M}|<9^m N<9n,M<9m的集网), M \mathcal{M} M S m

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值