UA MATH523A 实分析3 积分理论例题 Fubini定理计算重积分的极限

这篇博客通过一个具体的例子展示了如何使用Fubini定理来计算重积分的极限。通过将t^3/2*sin(t)展开为泰勒级数,并结合Gamma函数,解析地求解了积分。最终,当k趋近于无穷大时,积分的极限被证明等于π。
摘要由CSDN通过智能技术生成

UA MATH523A 实分析3 积分理论例题 Fubini定理计算重积分的极限


lim ⁡ k → ∞ ∫ 0 ∞ k 3 / 2 e − k x ∫ 0 x sin ⁡ t t 3 / 2 d t d x \lim_{k \to \infty}\int_0^{\infty} k^{3/2}e^{-kx}\int_0^x\frac{\sin t}{t^{3/2}}dtdx klim0k3/2ekx0xt3/2sintdtdx


积分部分难点在于它积不出来,因为 sin ⁡ t t 3 / 2 \frac{\sin t}{t^{3/2}} t3/2sint的积分找不到,所以我们用Taylor级数+Gamma函数的技巧来做。首先写出 sin ⁡ t t 3 / 2 \frac{\sin t}{t^{3/2}} t3/2sint的Taylor级数,
sin ⁡ t t 3 / 2 = ∑ n = 0 ∞ ( − 1 ) n t 2 n − 1 2 ( 2 n + 1 ) ! \frac{\sin t}{t^{3/2}}=\sum_{n=0}^{\infty}\frac{(-1)^nt^{2n-\frac{1}{2}}}{(2n+1)!} t3/2sint=n=0(2n+1)!(1)nt2n21

因此
∫ 0 x sin ⁡ t t 3 / 2 d t = ∫ 0 x ∑ n = 0 ∞ ( − 1 ) n t 2 n − 1 2 ( 2 n + 1 ) ! d t = ∑ n = 0 ∞ ( − 1 ) n ( 2 n + 1 ) ! ∫ 0 x t 2 n − 1 d t = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 n ( 2 n + 1 2 ) ( 2 n + 1 ) ! \int_0^x\frac{\sin t}{t^{3/2}}dt = \int_0^x\sum_{n=0}^{\infty}\frac{(-1)^nt^{2n-\frac{1}{2}}}{(2n+1)!}dt\\ = \sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)!}\int_0^x t^{2n-1}dt = \sum_{n=0}^{\infty}\frac{(-1)^nx^{2n+\frac{1}{n}}}{(2n+\frac{1}{2})(2n+1)!} 0xt3/2sintdt=0xn=0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值