UA MATH563 概率论的数学基础 中心极限定理7 Kolmogorov extension theorem及其扩展
上一讲为了构造包含无限个独立随机变量的序列,我们使用了Kolmogorov extension theorem:
如果在 ( R n , B ( R n ) ) (\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n)) (Rn,B(Rn))上有概率测度 ν n \nu_n νn,且 ν n \nu_n νn是一致的(consistent),即 ν n + 1 ( ( a 1 , b 1 ] × ⋯ × ( a n , b n ] × R ) = ν n ( ( a 1 , b 1 ] × ⋯ × ( a n , b n ] ) \nu_{n+1}((a_1,b_1] \times \cdots \times (a_n,b_n] \times \mathbb{R})=\nu_n((a_1,b_1] \times \cdots \times (a_n,b_n] ) νn+1((a1,b1]×⋯×(an,bn]×R)=νn((a1,b1]×⋯×(an,bn])那么我们可以在可测空间 ( R ∞ , B ( R ∞ ) ) (\mathbb{R}^{\infty},\mathcal{B}(\mathbb{R}^{\infty})) (R∞,