UA MATH563 概率论的数学基础 中心极限定理7 Kolmogorov extension theorem及其扩展

本文介绍了Kolmogorov扩展定理在概率论中的应用,特别是在构造无限个独立随机变量序列上的作用。内容包括定理的证明思路、在标准Borel空间和离散型随机变量上的推广,以及如何通过Ionescu-Tulcea定理扩展到不那么'nice'的空间,特别是对于Markov链和Markov kernel的概率空间扩展。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UA MATH563 概率论的数学基础 中心极限定理7 Kolmogorov extension theorem及其扩展

上一讲为了构造包含无限个独立随机变量的序列,我们使用了Kolmogorov extension theorem:

如果在 ( R n , B ( R n ) ) (\mathbb{R}^n,\mathcal{B}(\mathbb{R}^n)) (Rn,B(Rn))上有概率测度 ν n \nu_n νn,且 ν n \nu_n νn是一致的(consistent),即 ν n + 1 ( ( a 1 , b 1 ] × ⋯ × ( a n , b n ] × R ) = ν n ( ( a 1 , b 1 ] × ⋯ × ( a n , b n ] ) \nu_{n+1}((a_1,b_1] \times \cdots \times (a_n,b_n] \times \mathbb{R})=\nu_n((a_1,b_1] \times \cdots \times (a_n,b_n] ) νn+1((a1,b1]××(an,bn]×R)=νn((a1,b1]××(an,bn])那么我们可以在可测空间 ( R ∞ , B ( R ∞ ) ) (\mathbb{R}^{\infty},\mathcal{B}(\mathbb{R}^{\infty})) (R,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值