UA MATH563 概率论的数学基础 中心极限定理13 Glivenko-Cantelli定理:经验分布函数收敛到真实分布
这一讲我们介绍大数定律的一个应用,说明经验分布函数会收敛到真实的分布。先回顾一下我们介绍过的大数定律相关结论:
弱大数定律(weak law of large number, WLLN)
假设 { X n } n ≥ 1 \{X_n\}_{n \ge 1} {
Xn}n≥1是不相关的随机变量, E X n = μ , V a r ( X n ) ≤ c , ∀ n ≥ 1 , ∃ c > 0 EX_n = \mu,Var(X_n) \le c,\forall n \ge 1,\exists c>0 EXn=μ,Var(Xn)≤c,∀n≥1,∃c>0,则
X ˉ → L 2 μ \bar X \to_{L^2} \mu Xˉ→L2μ
基于四阶矩条件的强大数定律 (Strong Law of Large Number 1, SLLN1)
假设 X 1 , ⋯ , X n , n ≥ 1 X_1,\cdots,X_n,n\ge 1 X1,⋯,Xn,n≥1是独立同分布的随机变量, E X 1 4 < ∞ EX_1^4<\infty EX14<∞,则
X ˉ → a s E X 1 \bar X \to_{as} EX_1 Xˉ→asEX1
Etemadi强大数定律 (Strong Law of Large Number 2, SLLN2)
假设 X 1 , ⋯ , X n , n ≥ 1 X_1,\cdots,X_n,n\ge 1 X1,⋯,Xn,n≥1是两两独立、同分布的随机变量, E ∣ X 1 ∣ < ∞ E|X_1|<\infty E∣X1∣<∞,则
X ˉ → a s E X 1 \bar X \to_{as} EX_1 Xˉ→asEX1
经验分布函数
假设 X 1 , ⋯ , X n ∼ i i d F X_1,\cdots,X_n \sim_{iid} F X1,⋯,Xn∼iidF,我们想利用样本估计 F F F,记估计量为 F ^ \hat F F^: