UA MATH563 概率论的数学基础 中心极限定理13 Glivenko-Cantelli定理:经验分布函数收敛到真实分布

本文深入探讨了概率论中的中心极限定理,特别是Glivenko-Cantelli定理,该定理证明了经验分布函数几乎必然一致收敛于真实的分布。通过分析经验分布函数的统计性质,阐述了其在估计分布方面的应用,揭示了在样本数量足够大时,样本分布接近总体分布的原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UA MATH563 概率论的数学基础 中心极限定理13 Glivenko-Cantelli定理:经验分布函数收敛到真实分布

这一讲我们介绍大数定律的一个应用,说明经验分布函数会收敛到真实的分布。先回顾一下我们介绍过的大数定律相关结论:

弱大数定律(weak law of large number, WLLN)
假设 { X n } n ≥ 1 \{X_n\}_{n \ge 1} { Xn}n1是不相关的随机变量, E X n = μ , V a r ( X n ) ≤ c , ∀ n ≥ 1 , ∃ c > 0 EX_n = \mu,Var(X_n) \le c,\forall n \ge 1,\exists c>0 EXn=μ,Var(Xn)c,n1,c>0,则
X ˉ → L 2 μ \bar X \to_{L^2} \mu XˉL2μ

基于四阶矩条件的强大数定律 (Strong Law of Large Number 1, SLLN1)
假设 X 1 , ⋯   , X n , n ≥ 1 X_1,\cdots,X_n,n\ge 1 X1,,Xn,n1是独立同分布的随机变量, E X 1 4 < ∞ EX_1^4<\infty EX14<,则
X ˉ → a s E X 1 \bar X \to_{as} EX_1 XˉasEX1

Etemadi强大数定律 (Strong Law of Large Number 2, SLLN2)
假设 X 1 , ⋯   , X n , n ≥ 1 X_1,\cdots,X_n,n\ge 1 X1,,Xn,n1是两两独立、同分布的随机变量, E ∣ X 1 ∣ < ∞ E|X_1|<\infty EX1<,则
X ˉ → a s E X 1 \bar X \to_{as} EX_1 XˉasEX1


经验分布函数

假设 X 1 , ⋯   , X n ∼ i i d F X_1,\cdots,X_n \sim_{iid} F X1,,XniidF,我们想利用样本估计 F F F,记估计量为 F ^ \hat F F^

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值