量子力学 一 基础4 态空间、对偶与线性算符

本文介绍了量子力学中物理态与复线性空间的关系,包括线性空间的概念、物理态的叠加原理以及对偶空间。讨论了线性算符和其伴随算符的性质,阐述了内积在量子力学中的作用,并证明了线性空间与其对偶空间的同构关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

量子力学 一 基础4 态空间、对偶与线性算符

在线性代数中我们学习了线性空间这种代数结构,线性空间中的元素可以进行线性运算,这是对物理学中场的叠加原理最好的数学描述工具。但是线性代数中学的线性空间相关结论是以欧式空间为主的,在物理学中,我们更需要的是复线性空间(complex linear space),比如在光的圆偏振中,偏振状态的叠加在数学上是复向量的线性运算,因此作为量子力学的基础,我们先把欧式空间中的一些结果推广到复线性空间中。

物理成果 数学工具上的进步
牛顿力学 微积分
Maxwell方程组 向量分析
量子力学 Complex Linear Algebra

物理态与复线性空间

在量子力学中,我们研究的是物理对象的一系列物理态,记为
H = { ∣ α ⟩ } H = \{| \alpha \rangle\} H={ α}

其中 ∣ α ⟩ |\alpha\rangle α这种符号叫做Dirac ket(右矢或者包矢),它表示一种物理态,比如氢原子束缚稳定态、光粒子偏振态等, H H H是我们所要研究的一系列物理态构成的集合。

因为物理态是可以叠加的,因此我们需要 H H H关于加法封闭:
∀ ∣ α ⟩ , ∣ β ⟩ ∈ H , ∣ α ⟩ + ∣ β ⟩ ∈ H \forall |\alpha \rangle,|\beta \rangle \in H,|\alpha \rangle+|\beta \rangle \in H α,βH,α+βH

另外,物理态的“强弱”可以调节,所以我们也需要 H H H关于标量积封闭:
∀ a ∈ C , ∣ α ⟩ ∈ H , a ∣ α ⟩ ∈ H \forall a \in \mathbb{C},|\alpha\rangle \in H,a|\alpha \rangle \in H aC,αH,aαH

H H H中引入分配律:
a ( ∣ α ⟩ + ∣ β ⟩ ) = a ∣ α ⟩ + a ∣ β ⟩ a(|\alpha \rangle+|\beta \rangle) = a|\alpha \rangle+a|\beta \rangle a(α+β)=aα+aβ

这个式子的含义其实就是平行四边形法则与伸缩变换可以交换顺序进行;此外,引入其他假设(加法标量积的交换律、结合律、关于标量积的分配律、零向量等)使 H H H称为线性空间。有了线性空间后可以类比定义很多有用的概念,比如:

  1. 线性无关: ∣ α 1 ⟩ , ⋯   , ∣ α n ⟩ |\alpha_1 \rangle,\cdots,|\alpha_n\rangle α1,,αn线性独立如果 a 1 ∣ α 1 ⟩ + ⋯ + a n ∣ α n ⟩ = 0 a_1|\alpha_1 \rangle+\cdots+a_n|\alpha_n \rangle=0 a1α1++anαn=0当且仅当 a 1 = ⋯ = a n = 0 a_1=\cdots=a_n=0 a1==an=0
  2. H H H的维数:在 H H H中最大可能的互相独立的向量(最大线性无关组)个数(比如 H H H代表光的圆偏振态,用左旋与右旋偏振片就可以完全消光,因此圆偏振态是一个二维线性空间,所有的圆偏振态都可以用左旋和右旋线性表示)

如果两个物理态叠加不产生干涉,那么这两个物理态就是垂直的,为了从数学上表示垂直,我们需要引入内积。在 C n \mathbb{C}^n Cn中常用的内积是Hermite内积或者酉内积,在 H H H中,用 ( ⋅ , ⋅ ) (\cdot,\cdot) (,)表示两个态的内积,它应该满足:

  1. ( ∣ α ⟩ , ∣ α ⟩ ) ∈ R + ∪ { 0 } (|\alpha \rangle,|\alpha \rangle) \in \mathbb{R}^+ \cup \{0\} (α,α)R+{ 0},当且仅当 ∣ α ⟩ = 0 |\alpha \rangle=0 α=0时取等;
  2. ( a ∣ α ⟩ , ∣ β ⟩ ) = a ∗ ( ∣ α ⟩ , ∣ β ⟩ ) (a|\alpha\rangle,|\beta \rangle)=a^*(|\alpha\rangle,|\beta\rangle) (aα,β)=<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值