量子力学 一 基础4 态空间、对偶与线性算符
在线性代数中我们学习了线性空间这种代数结构,线性空间中的元素可以进行线性运算,这是对物理学中场的叠加原理最好的数学描述工具。但是线性代数中学的线性空间相关结论是以欧式空间为主的,在物理学中,我们更需要的是复线性空间(complex linear space),比如在光的圆偏振中,偏振状态的叠加在数学上是复向量的线性运算,因此作为量子力学的基础,我们先把欧式空间中的一些结果推广到复线性空间中。
物理成果 | 数学工具上的进步 |
---|---|
牛顿力学 | 微积分 |
Maxwell方程组 | 向量分析 |
量子力学 | Complex Linear Algebra |
物理态与复线性空间
在量子力学中,我们研究的是物理对象的一系列物理态,记为
H = { ∣ α ⟩ } H = \{| \alpha \rangle\} H={
∣α⟩}
其中 ∣ α ⟩ |\alpha\rangle ∣α⟩这种符号叫做Dirac ket(右矢或者包矢),它表示一种物理态,比如氢原子束缚稳定态、光粒子偏振态等, H H H是我们所要研究的一系列物理态构成的集合。
因为物理态是可以叠加的,因此我们需要 H H H关于加法封闭:
∀ ∣ α ⟩ , ∣ β ⟩ ∈ H , ∣ α ⟩ + ∣ β ⟩ ∈ H \forall |\alpha \rangle,|\beta \rangle \in H,|\alpha \rangle+|\beta \rangle \in H ∀∣α⟩,∣β⟩∈H,∣α⟩+∣β⟩∈H
另外,物理态的“强弱”可以调节,所以我们也需要 H H H关于标量积封闭:
∀ a ∈ C , ∣ α ⟩ ∈ H , a ∣ α ⟩ ∈ H \forall a \in \mathbb{C},|\alpha\rangle \in H,a|\alpha \rangle \in H ∀a∈C,∣α⟩∈H,a∣α⟩∈H
在 H H H中引入分配律:
a ( ∣ α ⟩ + ∣ β ⟩ ) = a ∣ α ⟩ + a ∣ β ⟩ a(|\alpha \rangle+|\beta \rangle) = a|\alpha \rangle+a|\beta \rangle a(∣α⟩+∣β⟩)=a∣α⟩+a∣β⟩
这个式子的含义其实就是平行四边形法则与伸缩变换可以交换顺序进行;此外,引入其他假设(加法标量积的交换律、结合律、关于标量积的分配律、零向量等)使 H H H称为线性空间。有了线性空间后可以类比定义很多有用的概念,比如:
- 线性无关: ∣ α 1 ⟩ , ⋯ , ∣ α n ⟩ |\alpha_1 \rangle,\cdots,|\alpha_n\rangle ∣α1⟩,⋯,∣αn⟩线性独立如果 a 1 ∣ α 1 ⟩ + ⋯ + a n ∣ α n ⟩ = 0 a_1|\alpha_1 \rangle+\cdots+a_n|\alpha_n \rangle=0 a1∣α1⟩+⋯+an∣αn⟩=0当且仅当 a 1 = ⋯ = a n = 0 a_1=\cdots=a_n=0 a1=⋯=an=0
- H H H的维数:在 H H H中最大可能的互相独立的向量(最大线性无关组)个数(比如 H H H代表光的圆偏振态,用左旋与右旋偏振片就可以完全消光,因此圆偏振态是一个二维线性空间,所有的圆偏振态都可以用左旋和右旋线性表示)
如果两个物理态叠加不产生干涉,那么这两个物理态就是垂直的,为了从数学上表示垂直,我们需要引入内积。在 C n \mathbb{C}^n Cn中常用的内积是Hermite内积或者酉内积,在 H H H中,用 ( ⋅ , ⋅ ) (\cdot,\cdot) (⋅,⋅)表示两个态的内积,它应该满足:
- ( ∣ α ⟩ , ∣ α ⟩ ) ∈ R + ∪ { 0 } (|\alpha \rangle,|\alpha \rangle) \in \mathbb{R}^+ \cup \{0\} (∣α⟩,∣α⟩)∈R+∪{ 0},当且仅当 ∣ α ⟩ = 0 |\alpha \rangle=0 ∣α⟩=0时取等;
- ( a ∣ α ⟩ , ∣ β ⟩ ) = a ∗ ( ∣ α ⟩ , ∣ β ⟩ ) (a|\alpha\rangle,|\beta \rangle)=a^*(|\alpha\rangle,|\beta\rangle) (a∣α⟩,∣β⟩)=<