量子力学 一 基础7 酉算符与Campbell公式
酉算符对应于线性代数中的酉变换,它不会改变态的尺度,可以维持内积结果不变,是一种保距运算。酉算符的定义是
U † U = U U † = I U^{\dag}U=UU^{\dag}=I U†U=UU†=I
酉算符的本征值与本征态
考虑 U ∣ u ⟩ = u ∣ u ⟩ U|u\rangle = u|u\rangle U∣u⟩=u∣u⟩
根据酉算符的定义
⟨ u ∣ u ⟩ = ⟨ u ∣ I ∣ u ⟩ = ⟨ u ∣ U † U ∣ u ⟩ = ( U ∣ u ⟩ , U ∣ u ⟩ ) = ( u ∣ u ⟩ , u ∣ u ⟩ ) = u ∗ u ⟨ u ∣ u ⟩ ⇒ u ∗ u = 1 \langle u | u \rangle = \langle u |I | u \rangle =\langle u |U^{\dag}U| u \rangle=(U|u\rangle,U|u\rangle) \\=(u|u\rangle,u|u\rangle)=u^*u\langle u | u \rangle \Rightarrow u^*u=1 ⟨u∣u⟩=⟨u∣I∣u⟩=⟨u∣U†U∣u⟩=(U∣u⟩,U∣u⟩)=(u∣u⟩,u∣u⟩)=u∗u⟨u∣u⟩⇒u∗u=1
也就是说酉算符的本征值一定是模为1的复数,可以把它表示为 e i λ , λ ∈ R e^{i\lambda},\lambda \in \mathbb{R} eiλ,λ∈R
引理 如果 N ≠ N † N \ne N^{\dag} N=