量子力学 一 基础7 酉算符与Hausdorff-Campbell公式

本文探讨了量子力学中的酉算符,阐述了酉算符的性质,如保距运算和本征值为模1的复数。介绍了酉算符的本征值与本征态的关系,并详细解释了正规矩阵的概念以及酉算符的谱分解。此外,还讲解了Hausdorff-Campbell公式,它是基底变换时进行算符运算的重要工具。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

量子力学 一 基础7 酉算符与Campbell公式

酉算符对应于线性代数中的酉变换,它不会改变态的尺度,可以维持内积结果不变,是一种保距运算。酉算符的定义是
U † U = U U † = I U^{\dag}U=UU^{\dag}=I UU=UU=I


酉算符的本征值与本征态

考虑 U ∣ u ⟩ = u ∣ u ⟩ U|u\rangle = u|u\rangle Uu=uu

根据酉算符的定义
⟨ u ∣ u ⟩ = ⟨ u ∣ I ∣ u ⟩ = ⟨ u ∣ U † U ∣ u ⟩ = ( U ∣ u ⟩ , U ∣ u ⟩ ) = ( u ∣ u ⟩ , u ∣ u ⟩ ) = u ∗ u ⟨ u ∣ u ⟩ ⇒ u ∗ u = 1 \langle u | u \rangle = \langle u |I | u \rangle =\langle u |U^{\dag}U| u \rangle=(U|u\rangle,U|u\rangle) \\=(u|u\rangle,u|u\rangle)=u^*u\langle u | u \rangle \Rightarrow u^*u=1 uu=uIu=uUUu=(Uu,Uu)=(uu,uu)=uuuuuu=1

也就是说酉算符的本征值一定是模为1的复数,可以把它表示为 e i λ , λ ∈ R e^{i\lambda},\lambda \in \mathbb{R} eiλ,λR


引理 如果 N ≠ N † N \ne N^{\dag} N=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值