UA OPTI570 量子力学5 例子:势为Dirac函数的粒子的一维薛定谔方程

该博客探讨了一维量子力学问题中,粒子在Dirac delta函数势能作用下的薛定谔方程解。通过分析波函数在原点的边界条件,得出波函数的不连续性和能量的关系,最终确定了粒子的波函数形式,并计算了动量空间的概率密度,验证了海森堡不确定性原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UA OPTI570 量子力学5 例子:势为Dirac函数的粒子的一维薛定谔方程

考虑一维问题,假设一个粒子的potential为 δ ( x ) \delta(x) δ(x),则它的Hamiltonian为 H = − ℏ 2 2 m d 2 d x 2 − α δ ( x ) H=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}-\alpha \delta(x) H=2m2dx2d2αδ(x)

记它的波函数为 ψ ( x ) \psi(x) ψ(x),在 − ϵ -\epsilon ϵ ϵ \epsilon ϵ上求 H ψ H\psi Hψ的积分:

∫ − ϵ + ϵ H ψ ( x ) d x = ∫ − ϵ + ϵ ( − ℏ 2 2 m d 2 d x 2 ψ ( x ) − α δ ( x ) ψ ( x ) ) d x = − ℏ 2 2 m ( ψ ′ ( ϵ ) − ψ ′ ( − ϵ ) ) − α ψ ( 0 ) \int_{-\epsilon}^{+\epsilon} H\psi(x)dx=\int_{-\epsilon}^{+\epsilon} \left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x)-\alpha \delta(x)\psi(x) \right)dx \\ =-\frac{\hbar^2}{2m}(\psi'(\epsilon)-\psi'(-\epsilon))-\alpha \psi(0) ϵ+ϵHψ(x)dx=ϵ+ϵ(2m2dx2d2ψ(x)αδ(x)ψ(x))dx=2m2(ψ(ϵ)ψ(ϵ))αψ(0)

E E E表示它的能量,则
∫ − ϵ + ϵ E ψ ( x ) d x → 0 , ϵ → 0 \int_{-\epsilon}^{+\epsilon} E\psi(x)dx \to 0,\epsilon \to 0 ϵ+ϵEψ(x)dx0,ϵ0

于是根据薛定谔方程,这个粒子的波函数的一阶导在原点处不连续:
− ℏ 2 2 m ( ψ ′ ( ϵ ) − ψ ′ ( − ϵ ) ) − α ψ ( 0 ) → − ℏ 2 2 m ( ψ ′ ( 0 + ) − ψ ′ ( 0 − ) ) − α ψ ( 0 ) = 0 ψ ′ ( 0 + ) − ψ ′ ( 0 − ) = − 2 m α ψ ( 0 ) ℏ 2 -\frac{\hbar^2}{2m}(\psi'(\epsilon)-\psi'(-\epsilon))-\alpha \psi(0) \\ \to -\frac{\hbar^2}{2m}(\psi'(0^+)-\psi'(0^-))-\alpha \psi(0)=0 \\ \psi'(0^+)-\psi'(0^-) = -\frac{2m\alpha \psi(0)}{\hbar^2} 2m2(ψ(ϵ)ψ(ϵ))αψ(0)2m2(ψ(0+)ψ(0))αψ(0)=0ψ(0+)ψ(0)=22mαψ(0)

这个粒子的薛定谔方程通解为
ψ ( x ) = A 1 e − ρ x + A 1 ′ e ρ x , x < 0 ψ ( x ) = A 2 e − ρ x + A 2 ′ e ρ x , x > 0 \psi(x)=A_1e^{-\rho x}+A_1'e^{\rho x},x<0 \\ \psi(x)=A_2e^{-\rho x}+A_2'e^{\rho x},x>0 ψ(x)=A1eρx+A1eρx,x<0ψ(x)=A2eρx+A2eρx,x>0

x < 0 x<0 x<0时,
ψ ( x ) = A 1 e ρ x + A 1 ′ e − ρ x d 2 d x 2 ψ ( x ) = A 1 ρ 2 e ρ x + A 1 ′ ρ 2 e − ρ x \psi(x)=A_1e^{\rho x}+A_1' e^{-\rho x} \\ \frac{d^2}{dx^2}\psi(x)=A_1 \rho^2 e^{\rho x}+A_1' \rho^2 e^{-\rho x} ψ(x)=A1eρx+A1eρxdx2d2ψ(x)=A1ρ2eρx+A1ρ2eρx

所以
− ℏ 2 2 m ( A 1 ρ 2 e ρ x + A 1 ′ ρ 2 e − ρ x ) = E ( A 1 e ρ x + A 1 ′ e − ρ x ) ⇒ − ℏ 2 2 m ρ 2 = E ⇒ ρ = ± − 2 m E ℏ -\frac{\hbar^2}{2m}(A_1 \rho^2 e^{\rho x}+A_1' \rho^2 e^{-\rho x} )=E(A_1e^{\rho x}+A_1' e^{-\rho x}) \\ \Rightarrow -\frac{\hbar^2}{2m} \rho^2 = E \Rightarrow \rho = \pm \frac{\sqrt{-2mE}}{\hbar} 2m2(A1ρ2eρx+A1ρ2eρx)=E(A1eρx+A1eρx)2m2ρ2=Eρ=±2mE

并且
ψ ( x ) = A 1 e − 2 m E ℏ x + A 1 ′ e − − 2 m E ℏ x ∣ ψ ( x ) ∣ 2 = ( A 1 e − 2 m E ℏ x + A 1 ′ e − − 2 m E ℏ x ) 2 = A 1 2 e 2 − 2 m E ℏ x + ( A 1 ′ ) 2 e − 2 − 2 m E ℏ x + 2 ∣ A 1 ∣ ∣ A 1 ′ ∣ ∫ − ∞ 0 ∣ ψ ( x ) ∣ 2 d x = ∫ − ∞ 0 A 1 2 e 2 − 2 m E ℏ x + ( A 1 ′ ) 2 e − 2 − 2 m E ℏ x d x + 2 ∣ A 1 ∣ ∣ A 1 ′ ∣ \psi(x)=A_1e^{\frac{\sqrt{-2mE}}{\hbar} x}+A_1' e^{-\frac{\sqrt{-2mE}}{\hbar} x} \\ |\psi(x)|^2=(A_1e^{\frac{\sqrt{-2mE}}{\hbar} x}+A_1' e^{-\frac{\sqrt{-2mE}}{\hbar} x} )^2 \\ =A_1^2e^{\frac{2\sqrt{-2mE}}{\hbar} x}+(A_1')^2e^{-\frac{2\sqrt{-2mE}}{\hbar} x}+2|A_1||A_1'| \\ \int_{-\infty}^{0}|\psi(x)|^2dx=\int_{-\infty}^0 A_1^2e^{\frac{2\sqrt{-2mE}}{\hbar} x}+(A_1')^2e^{-\frac{2\sqrt{-2mE}}{\hbar} x}dx+2|A_1||A_1'| ψ(x)=A1e2mE x+A1e2mE xψ(x)2=(A1e2mE x+A1e2mE x)2=A12e22mE x+(A1)2e22mE x+2A1A10ψ(x)2dx=0A12e22mE x+(A1)2e22mE xdx+2A1A1

要保证这个积分存在, A 1 ′ = 0 A_1'=0 A1=0 ψ ( x ) = A 1 e − 2 m E ℏ x , x < 0 \psi(x)=A_1e^{\frac{\sqrt{-2mE}}{\hbar} x},x<0 ψ(x)=A1e2mE x,x<0,类似地当 x > 0 x>0 x>0时, A 2 = 0 A_2=0 A2=0,因此
ψ ( x ) = { A 1 e − 2 m E ℏ x , x < 0 A 2 ′ e − − 2 m E ℏ x , x > 0 \psi(x) = \begin{cases} A_1e^{\frac{\sqrt{-2mE}}{\hbar} x},x<0 \\ A_2'e^{\frac{-\sqrt{-2mE}}{\hbar} x},x>0 \end{cases} ψ(x)={A1e2mE x,x<0A2e2mE x,x>0

注意到 A 1 = A 2 ′ = ψ ( 0 ) A_1=A_2'=\psi(0) A1=A2=ψ(0)以及 ψ ′ ( 0 + ) − ψ ′ ( 0 − ) = − 2 m α ψ ( 0 ) ℏ 2 ⇒ ψ ( 0 ) − 2 m E ℏ e − 2 m E ℏ x + ψ ( 0 ) − 2 m E ℏ e − − 2 m E ℏ x = − 2 m α ψ ( 0 ) ℏ 2 E = − m α 2 2 ℏ 2 \psi'(0^+)-\psi'(0^-) = -\frac{2m\alpha \psi(0)}{\hbar^2} \\ \Rightarrow \psi(0)\frac{\sqrt{-2mE}}{\hbar}e^{\frac{\sqrt{-2mE}}{\hbar} x}+\psi(0)\frac{\sqrt{-2mE}}{\hbar}e^{-\frac{\sqrt{-2mE}}{\hbar} x}= -\frac{2m\alpha \psi(0)}{\hbar^2} \\ E = -\frac{m\alpha^2}{2\hbar^2} ψ(0+)ψ(0)=22mαψ(0)ψ(0)2mE e2mE x+ψ(0)2mE e2mE x=22mαψ(0)E=22mα2

并且有
ρ = − 2 m E ℏ = m α ℏ 2 \rho = \frac{\sqrt{-2mE}}{\hbar} =\frac{m\alpha}{\hbar^2} ρ=2mE =2mα

对于标准化的波函数 ∫ − ∞ + ∞ ∣ ψ ( x ) ∣ 2 d x = ∫ − ∞ 0 A 1 2 e 2 − 2 m E ℏ x d x + ∫ 0 + ∞ ( A 2 ′ ) 2 e − 2 − 2 m E ℏ x d x = ℏ ( A 1 2 + ( A 2 ′ ) 2 ) 2 − 2 m E = 1 ⇒ A 1 = A 2 ′ = m α ℏ \int_{-\infty}^{+\infty}|\psi(x)|^2dx=\int_{-\infty}^0 A_1^2e^{\frac{2\sqrt{-2mE}}{\hbar} x}dx+\int_{0}^{+\infty} (A_2')^2e^{-\frac{2\sqrt{-2mE}}{\hbar} x}dx \\ = \frac{\hbar(A_1^2+(A_2')^2)}{2\sqrt{-2mE}} = 1 \Rightarrow A_1=A_2'=\frac{\sqrt{m \alpha}}{\hbar} +ψ(x)2dx=0A12e22mE xdx+0+(A2)2e22mE xdx=22mE (A12+(A2)2)=1A1=A2=mα

综上,这个粒子的波函数为
ψ ( x ) = { m α ℏ e ρ x , x < 0 m α ℏ e − ρ x , x > 0 \psi(x) = \begin{cases} \frac{\sqrt{m \alpha}}{\hbar}e^{\rho x},x<0 \\ \frac{\sqrt{m \alpha}}{\hbar}e^{-\rho x},x>0 \end{cases} ψ(x)={mα eρx,x<0mα eρx,x>0

带宽为
Δ x = 2 ln ⁡ 2 ρ \Delta x = \frac{2 \ln 2}{\rho} Δx=ρ2ln2

这个例子也可以说明海森堡原理,计算

ψ ˉ ( p ) = 1 2 m ℏ ∫ − ∞ + ∞ ψ ( x ) e − i p x / ℏ d x = 1 2 m ℏ ∫ − ∞ + ∞ ( m α ℏ e ρ x u ( − x ) + m α ℏ e − ρ x u ( x ) ) e − i p x / ℏ d x = m α 2 π ℏ 3 ( 1 ρ − i p ℏ + 1 ρ + i p ℏ ) \bar \psi(p)=\frac{1}{\sqrt{2m \hbar}}\int_{-\infty}^{+\infty} \psi(x)e^{-ipx/\hbar}dx \\ = \frac{1}{\sqrt{2m \hbar}}\int_{-\infty}^{+\infty} \left( \frac{\sqrt{m \alpha}}{\hbar}e^{\rho x}u(-x)+ \frac{\sqrt{m \alpha}}{\hbar}e^{-\rho x}u(x)\right)e^{-ipx/\hbar}dx \\ = \sqrt{\frac{m\alpha}{2\pi \hbar^3}}\left( \frac{1}{\rho-\frac{ip}{\hbar}}+\frac{1}{\rho+\frac{ip}{\hbar}}\right) ψˉ(p)=2m 1+ψ(x)eipx/dx=2m 1+(mα eρxu(x)+mα eρxu(x))eipx/dx=2π3mα (ρip1+ρ+ip1)

在动量空间中的概率密度为
d P ( p ) = ∣ ψ ˉ ( p ) ∣ 2 = 2 m α π ℏ 3 ρ ρ 2 + p 2 ℏ 2 d\mathcal{P}(p)=|\bar \psi(p)|^2= \sqrt{\frac{2m\alpha}{\pi \hbar^3}}\frac{\rho}{\rho^2+\frac{p^2}{\hbar^2}} dP(p)=ψˉ(p)2=π32mα ρ2+2p2ρ

假设概率密度大于 a a a时认为概率不可忽略,那么不可忽略的动量区域长度为
Δ p = 2 a ρ ℏ \Delta p = 2a\rho \hbar Δp=2aρ

于是 Δ x ⋅ Δ p = 4 a ℏ ln ⁡ 2 \Delta x \cdot \Delta p = 4a \hbar \ln 2 ΔxΔp=4aln2

这与 ℏ \hbar 同阶,说明要同时精确测量位置与动量是不可能的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值