UA OPTI570 量子力学5 例子:势为Dirac函数的粒子的一维薛定谔方程
考虑一维问题,假设一个粒子的potential为 δ ( x ) \delta(x) δ(x),则它的Hamiltonian为 H = − ℏ 2 2 m d 2 d x 2 − α δ ( x ) H=-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}-\alpha \delta(x) H=−2mℏ2dx2d2−αδ(x)
记它的波函数为 ψ ( x ) \psi(x) ψ(x),在 − ϵ -\epsilon −ϵ到 ϵ \epsilon ϵ上求 H ψ H\psi Hψ的积分:
∫ − ϵ + ϵ H ψ ( x ) d x = ∫ − ϵ + ϵ ( − ℏ 2 2 m d 2 d x 2 ψ ( x ) − α δ ( x ) ψ ( x ) ) d x = − ℏ 2 2 m ( ψ ′ ( ϵ ) − ψ ′ ( − ϵ ) ) − α ψ ( 0 ) \int_{-\epsilon}^{+\epsilon} H\psi(x)dx=\int_{-\epsilon}^{+\epsilon} \left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}\psi(x)-\alpha \delta(x)\psi(x) \right)dx \\ =-\frac{\hbar^2}{2m}(\psi'(\epsilon)-\psi'(-\epsilon))-\alpha \psi(0) ∫−ϵ+ϵHψ(x)dx=∫−ϵ+ϵ(−2mℏ2dx2d2ψ(x)−αδ(x)ψ(x))dx=−2mℏ2(ψ′(ϵ)−ψ′(−ϵ))−αψ(0)
用
E
E
E表示它的能量,则
∫
−
ϵ
+
ϵ
E
ψ
(
x
)
d
x
→
0
,
ϵ
→
0
\int_{-\epsilon}^{+\epsilon} E\psi(x)dx \to 0,\epsilon \to 0
∫−ϵ+ϵEψ(x)dx→0,ϵ→0
于是根据薛定谔方程,这个粒子的波函数的一阶导在原点处不连续:
−
ℏ
2
2
m
(
ψ
′
(
ϵ
)
−
ψ
′
(
−
ϵ
)
)
−
α
ψ
(
0
)
→
−
ℏ
2
2
m
(
ψ
′
(
0
+
)
−
ψ
′
(
0
−
)
)
−
α
ψ
(
0
)
=
0
ψ
′
(
0
+
)
−
ψ
′
(
0
−
)
=
−
2
m
α
ψ
(
0
)
ℏ
2
-\frac{\hbar^2}{2m}(\psi'(\epsilon)-\psi'(-\epsilon))-\alpha \psi(0) \\ \to -\frac{\hbar^2}{2m}(\psi'(0^+)-\psi'(0^-))-\alpha \psi(0)=0 \\ \psi'(0^+)-\psi'(0^-) = -\frac{2m\alpha \psi(0)}{\hbar^2}
−2mℏ2(ψ′(ϵ)−ψ′(−ϵ))−αψ(0)→−2mℏ2(ψ′(0+)−ψ′(0−))−αψ(0)=0ψ′(0+)−ψ′(0−)=−ℏ22mαψ(0)
这个粒子的薛定谔方程通解为
ψ
(
x
)
=
A
1
e
−
ρ
x
+
A
1
′
e
ρ
x
,
x
<
0
ψ
(
x
)
=
A
2
e
−
ρ
x
+
A
2
′
e
ρ
x
,
x
>
0
\psi(x)=A_1e^{-\rho x}+A_1'e^{\rho x},x<0 \\ \psi(x)=A_2e^{-\rho x}+A_2'e^{\rho x},x>0
ψ(x)=A1e−ρx+A1′eρx,x<0ψ(x)=A2e−ρx+A2′eρx,x>0
当
x
<
0
x<0
x<0时,
ψ
(
x
)
=
A
1
e
ρ
x
+
A
1
′
e
−
ρ
x
d
2
d
x
2
ψ
(
x
)
=
A
1
ρ
2
e
ρ
x
+
A
1
′
ρ
2
e
−
ρ
x
\psi(x)=A_1e^{\rho x}+A_1' e^{-\rho x} \\ \frac{d^2}{dx^2}\psi(x)=A_1 \rho^2 e^{\rho x}+A_1' \rho^2 e^{-\rho x}
ψ(x)=A1eρx+A1′e−ρxdx2d2ψ(x)=A1ρ2eρx+A1′ρ2e−ρx
所以
−
ℏ
2
2
m
(
A
1
ρ
2
e
ρ
x
+
A
1
′
ρ
2
e
−
ρ
x
)
=
E
(
A
1
e
ρ
x
+
A
1
′
e
−
ρ
x
)
⇒
−
ℏ
2
2
m
ρ
2
=
E
⇒
ρ
=
±
−
2
m
E
ℏ
-\frac{\hbar^2}{2m}(A_1 \rho^2 e^{\rho x}+A_1' \rho^2 e^{-\rho x} )=E(A_1e^{\rho x}+A_1' e^{-\rho x}) \\ \Rightarrow -\frac{\hbar^2}{2m} \rho^2 = E \Rightarrow \rho = \pm \frac{\sqrt{-2mE}}{\hbar}
−2mℏ2(A1ρ2eρx+A1′ρ2e−ρx)=E(A1eρx+A1′e−ρx)⇒−2mℏ2ρ2=E⇒ρ=±ℏ−2mE
并且
ψ
(
x
)
=
A
1
e
−
2
m
E
ℏ
x
+
A
1
′
e
−
−
2
m
E
ℏ
x
∣
ψ
(
x
)
∣
2
=
(
A
1
e
−
2
m
E
ℏ
x
+
A
1
′
e
−
−
2
m
E
ℏ
x
)
2
=
A
1
2
e
2
−
2
m
E
ℏ
x
+
(
A
1
′
)
2
e
−
2
−
2
m
E
ℏ
x
+
2
∣
A
1
∣
∣
A
1
′
∣
∫
−
∞
0
∣
ψ
(
x
)
∣
2
d
x
=
∫
−
∞
0
A
1
2
e
2
−
2
m
E
ℏ
x
+
(
A
1
′
)
2
e
−
2
−
2
m
E
ℏ
x
d
x
+
2
∣
A
1
∣
∣
A
1
′
∣
\psi(x)=A_1e^{\frac{\sqrt{-2mE}}{\hbar} x}+A_1' e^{-\frac{\sqrt{-2mE}}{\hbar} x} \\ |\psi(x)|^2=(A_1e^{\frac{\sqrt{-2mE}}{\hbar} x}+A_1' e^{-\frac{\sqrt{-2mE}}{\hbar} x} )^2 \\ =A_1^2e^{\frac{2\sqrt{-2mE}}{\hbar} x}+(A_1')^2e^{-\frac{2\sqrt{-2mE}}{\hbar} x}+2|A_1||A_1'| \\ \int_{-\infty}^{0}|\psi(x)|^2dx=\int_{-\infty}^0 A_1^2e^{\frac{2\sqrt{-2mE}}{\hbar} x}+(A_1')^2e^{-\frac{2\sqrt{-2mE}}{\hbar} x}dx+2|A_1||A_1'|
ψ(x)=A1eℏ−2mEx+A1′e−ℏ−2mEx∣ψ(x)∣2=(A1eℏ−2mEx+A1′e−ℏ−2mEx)2=A12eℏ2−2mEx+(A1′)2e−ℏ2−2mEx+2∣A1∣∣A1′∣∫−∞0∣ψ(x)∣2dx=∫−∞0A12eℏ2−2mEx+(A1′)2e−ℏ2−2mExdx+2∣A1∣∣A1′∣
要保证这个积分存在,
A
1
′
=
0
A_1'=0
A1′=0,
ψ
(
x
)
=
A
1
e
−
2
m
E
ℏ
x
,
x
<
0
\psi(x)=A_1e^{\frac{\sqrt{-2mE}}{\hbar} x},x<0
ψ(x)=A1eℏ−2mEx,x<0,类似地当
x
>
0
x>0
x>0时,
A
2
=
0
A_2=0
A2=0,因此
ψ
(
x
)
=
{
A
1
e
−
2
m
E
ℏ
x
,
x
<
0
A
2
′
e
−
−
2
m
E
ℏ
x
,
x
>
0
\psi(x) = \begin{cases} A_1e^{\frac{\sqrt{-2mE}}{\hbar} x},x<0 \\ A_2'e^{\frac{-\sqrt{-2mE}}{\hbar} x},x>0 \end{cases}
ψ(x)={A1eℏ−2mEx,x<0A2′eℏ−−2mEx,x>0
注意到 A 1 = A 2 ′ = ψ ( 0 ) A_1=A_2'=\psi(0) A1=A2′=ψ(0)以及 ψ ′ ( 0 + ) − ψ ′ ( 0 − ) = − 2 m α ψ ( 0 ) ℏ 2 ⇒ ψ ( 0 ) − 2 m E ℏ e − 2 m E ℏ x + ψ ( 0 ) − 2 m E ℏ e − − 2 m E ℏ x = − 2 m α ψ ( 0 ) ℏ 2 E = − m α 2 2 ℏ 2 \psi'(0^+)-\psi'(0^-) = -\frac{2m\alpha \psi(0)}{\hbar^2} \\ \Rightarrow \psi(0)\frac{\sqrt{-2mE}}{\hbar}e^{\frac{\sqrt{-2mE}}{\hbar} x}+\psi(0)\frac{\sqrt{-2mE}}{\hbar}e^{-\frac{\sqrt{-2mE}}{\hbar} x}= -\frac{2m\alpha \psi(0)}{\hbar^2} \\ E = -\frac{m\alpha^2}{2\hbar^2} ψ′(0+)−ψ′(0−)=−ℏ22mαψ(0)⇒ψ(0)ℏ−2mEeℏ−2mEx+ψ(0)ℏ−2mEe−ℏ−2mEx=−ℏ22mαψ(0)E=−2ℏ2mα2
并且有
ρ
=
−
2
m
E
ℏ
=
m
α
ℏ
2
\rho = \frac{\sqrt{-2mE}}{\hbar} =\frac{m\alpha}{\hbar^2}
ρ=ℏ−2mE=ℏ2mα
对于标准化的波函数 ∫ − ∞ + ∞ ∣ ψ ( x ) ∣ 2 d x = ∫ − ∞ 0 A 1 2 e 2 − 2 m E ℏ x d x + ∫ 0 + ∞ ( A 2 ′ ) 2 e − 2 − 2 m E ℏ x d x = ℏ ( A 1 2 + ( A 2 ′ ) 2 ) 2 − 2 m E = 1 ⇒ A 1 = A 2 ′ = m α ℏ \int_{-\infty}^{+\infty}|\psi(x)|^2dx=\int_{-\infty}^0 A_1^2e^{\frac{2\sqrt{-2mE}}{\hbar} x}dx+\int_{0}^{+\infty} (A_2')^2e^{-\frac{2\sqrt{-2mE}}{\hbar} x}dx \\ = \frac{\hbar(A_1^2+(A_2')^2)}{2\sqrt{-2mE}} = 1 \Rightarrow A_1=A_2'=\frac{\sqrt{m \alpha}}{\hbar} ∫−∞+∞∣ψ(x)∣2dx=∫−∞0A12eℏ2−2mExdx+∫0+∞(A2′)2e−ℏ2−2mExdx=2−2mEℏ(A12+(A2′)2)=1⇒A1=A2′=ℏmα
综上,这个粒子的波函数为
ψ
(
x
)
=
{
m
α
ℏ
e
ρ
x
,
x
<
0
m
α
ℏ
e
−
ρ
x
,
x
>
0
\psi(x) = \begin{cases} \frac{\sqrt{m \alpha}}{\hbar}e^{\rho x},x<0 \\ \frac{\sqrt{m \alpha}}{\hbar}e^{-\rho x},x>0 \end{cases}
ψ(x)={ℏmαeρx,x<0ℏmαe−ρx,x>0
带宽为
Δ
x
=
2
ln
2
ρ
\Delta x = \frac{2 \ln 2}{\rho}
Δx=ρ2ln2
这个例子也可以说明海森堡原理,计算
ψ ˉ ( p ) = 1 2 m ℏ ∫ − ∞ + ∞ ψ ( x ) e − i p x / ℏ d x = 1 2 m ℏ ∫ − ∞ + ∞ ( m α ℏ e ρ x u ( − x ) + m α ℏ e − ρ x u ( x ) ) e − i p x / ℏ d x = m α 2 π ℏ 3 ( 1 ρ − i p ℏ + 1 ρ + i p ℏ ) \bar \psi(p)=\frac{1}{\sqrt{2m \hbar}}\int_{-\infty}^{+\infty} \psi(x)e^{-ipx/\hbar}dx \\ = \frac{1}{\sqrt{2m \hbar}}\int_{-\infty}^{+\infty} \left( \frac{\sqrt{m \alpha}}{\hbar}e^{\rho x}u(-x)+ \frac{\sqrt{m \alpha}}{\hbar}e^{-\rho x}u(x)\right)e^{-ipx/\hbar}dx \\ = \sqrt{\frac{m\alpha}{2\pi \hbar^3}}\left( \frac{1}{\rho-\frac{ip}{\hbar}}+\frac{1}{\rho+\frac{ip}{\hbar}}\right) ψˉ(p)=2mℏ1∫−∞+∞ψ(x)e−ipx/ℏdx=2mℏ1∫−∞+∞(ℏmαeρxu(−x)+ℏmαe−ρxu(x))e−ipx/ℏdx=2πℏ3mα(ρ−ℏip1+ρ+ℏip1)
在动量空间中的概率密度为
d
P
(
p
)
=
∣
ψ
ˉ
(
p
)
∣
2
=
2
m
α
π
ℏ
3
ρ
ρ
2
+
p
2
ℏ
2
d\mathcal{P}(p)=|\bar \psi(p)|^2= \sqrt{\frac{2m\alpha}{\pi \hbar^3}}\frac{\rho}{\rho^2+\frac{p^2}{\hbar^2}}
dP(p)=∣ψˉ(p)∣2=πℏ32mαρ2+ℏ2p2ρ
假设概率密度大于
a
a
a时认为概率不可忽略,那么不可忽略的动量区域长度为
Δ
p
=
2
a
ρ
ℏ
\Delta p = 2a\rho \hbar
Δp=2aρℏ
于是 Δ x ⋅ Δ p = 4 a ℏ ln 2 \Delta x \cdot \Delta p = 4a \hbar \ln 2 Δx⋅Δp=4aℏln2
这与 ℏ \hbar ℏ同阶,说明要同时精确测量位置与动量是不可能的。