UA OPTI501 电磁波 Lorentz Oscillator Model 4 Hilbet变换与Kramers-Konig关系式

本文探讨了在电磁波领域,Lorentz振子模型在阶梯响应和脉冲响应下的电极化行为。通过推导展示了电极化与外部电场之间的动力学方程,并详细阐述了Kramers-Konig关系式的物理意义,该关系式揭示了电介质响应的实部和虚部之间的Hilbert变换联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UA OPTI501 电磁波 Lorentz Oscillator Model 4 Hilbet变换与Kramers-Konig关系式

阶梯响应与脉冲响应

在这里插入图片描述

我们之前用上图所示质点-弹簧系统研究了介电材料极化性质的Lorentz模型,其中外部电场是简谐振荡的 ( E x 0 cos ⁡ ( w t ) ) (E_{x0}\cos(wt)) (Ex0cos(wt)),但现在我们尝试给这个质点-弹簧系统施加阶梯型或者脉冲型外部电场,并推导电极化矢量。

在介绍Lorentz模型时,我们推导出来了质点-弹簧系统的振动方程为
x ¨ + γ x ˙ + w 0 2 x = − q m E ( t ) \ddot{x}+\gamma \dot{x}+w_0^2 x=-\frac{q}{m}E(t) x¨+γx˙+w02x=mqE(t)

左右两边同乘以 − N q E ^ -Nq\hat E NqE^可得
P ¨ + γ P ˙ + w 0 2 P ⏟ 介 电 材 料 的 电 极 化 = N q 2 m E ⏟ 外 部 电 场 \underbrace{\ddot{\textbf P}+\gamma \dot{\textbf P}+w_0^2 \textbf P}_{介电材料的电极化} = \underbrace{\frac{Nq^2}{m} \textbf E}_{外部电场} P¨+γP˙+w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值