UA OPTI501 电磁波 Lorentz Oscillator Model 4 Hilbet变换与Kramers-Konig关系式
阶梯响应与脉冲响应
我们之前用上图所示质点-弹簧系统研究了介电材料极化性质的Lorentz模型,其中外部电场是简谐振荡的 ( E x 0 cos ( w t ) ) (E_{x0}\cos(wt)) (Ex0cos(wt)),但现在我们尝试给这个质点-弹簧系统施加阶梯型或者脉冲型外部电场,并推导电极化矢量。
在介绍Lorentz模型时,我们推导出来了质点-弹簧系统的振动方程为
x ¨ + γ x ˙ + w 0 2 x = − q m E ( t ) \ddot{x}+\gamma \dot{x}+w_0^2 x=-\frac{q}{m}E(t) x¨+γx˙+w02x=−mqE(t)
左右两边同乘以 − N q E ^ -Nq\hat E −NqE^可得
P ¨ + γ P ˙ + w 0 2 P ⏟ 介 电 材 料 的 电 极 化 = N q 2 m E ⏟ 外 部 电 场 \underbrace{\ddot{\textbf P}+\gamma \dot{\textbf P}+w_0^2 \textbf P}_{介电材料的电极化} = \underbrace{\frac{Nq^2}{m} \textbf E}_{外部电场} 介电材料的电极化
P¨+γP˙+w