自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(11)
  • 收藏
  • 关注

原创 射击小游戏(Python)

这个项目是我第一次开发小游戏。由7个文件构成,分别是alian_invasion、alien、bullet、game_functions、game_stats、settings、ship。项目开始开发前得先安装pygame,这个过程真是一把辛酸泪,整整弄了2天!!!简直不忍回首!!!有空再写一篇安装文章给各位吧。好了,进入正题,直接给出7个文件的代码吧。alian_invasion创建一系...

2020-03-18 21:50:02 481

原创 项目-Twitter WeRateDogs评分分析

Twitter收集import numpy as npimport pandas as pdimport jsonimport matplotlib.pyplot as pltimport seaborn as sbimport requestsimport osfolder_name = 'image_predictions'if not os.path.exists(fo...

2020-02-15 20:54:40 919

原创 项目-为CharityML寻找捐献者

先创建一个可视化文件import warningswarnings.filterwarnings("ignore", category = UserWarning, module = "matplotlib")from IPython import get_ipythonget_ipython().run_line_magic('matplotlib', 'inline')import...

2020-02-15 20:39:17 369

原创 机器学习-随机森林

随机森林什么是随机森林随机森林是有监督的集成学习模型(ensemble-learning model),主要用于分类和回归。随机森林建立了很多决策树,然后将其集成,以获得更准确和稳定的预测。集成学习模型复合了多个机器学习模型(这里指决策树),使得整体性能更好。究其逻辑,每一个模型的个体再单独使用时效果是薄弱的,但多个模型个体集合在一起的时候,整体的功能会变得强大。在随机森林的情况下,单个...

2020-02-11 11:23:41 631

原创 机器学习-决策树

决策树决策树是什么它是一种监督学习算法,主要用于分类问题,适用于可分类的、连续的输入和输出变量。决策树是这样的一种树,这棵树的每个分支节点表示多个可以选择的选项,并且每个叶节点表示最终所做的决策。决策树算法:ID3ID3代表的是Iterative Dichotomizer 3。它的基本思想是,通过在给定集合中使用自上而下的贪婪搜索算法来构造决策树,以测试每个树节点处的每个属性。听起来...

2020-02-10 21:04:41 290

原创 机器学习-支持向量机

支持向量机(SVM)什么是SVM支持向量机(SVM)是一个有监督的机器学习算法,它可用于分类和回归分析,最主要是用于分类问题中。在这个算法中,根据特征值,构建一个n维空间(其中n即是特征数量),把每个数据点投影到此空间内。数据如何分类通过查找一个超平面,把数据区分为两类。换句话说,算法输出一个最佳超平面,用于数据分类。什么是最佳超平面?对SVM来说,它指的是距离两类数据最远的一个超平...

2020-02-10 19:55:34 298

原创 机器学习-K近邻法

K近邻法什么是K-NNK近邻算法是一种简单但也最常用的分类算法,它也可以应用于回归计算。K-NN是无参数学习(这意味着它不会对底层数据的分布作出任何假设),它是基于示例(意味这我们的算法没有显...

2020-02-10 16:01:56 241

原创 机器学习-逻辑回归

逻辑回归什么是逻辑回归逻辑回归被用来处理不同的分类问题,这里的目的是预测当前被观察的对象属于哪个组。它会给你提供一个离散的二进制输出结果。一个简单的例子就是判断一个人是否会在即将到来的选举中进行投票。如何工作逻辑回归使用基础函数(Sigmoid函数)通过估算概率来测量因变量(我们想要预测的标签)和一个或者多个自变量之间的关系。作出预测这些概率值必须转换为二进制数,以便实际中进行预测。...

2020-02-10 12:11:23 310 1

原创 机器学习-多元线性回归

多元线性回归多元线性回归尝试通过一个线性方程来适配观测数据,这个线性方程是在两个以上(包括两个)的特征和响应之间构建的一个关系。多元线性回归的实现步骤和简单线性回归很相似,在评价部分有所不同。你可以用它来找出在预测结果上哪个因素影响力最大,以及不同变量是如何相互关联的。前提:想要有一个成功的回归分析,确认这些嘉定很重要1、线性:自变量和因变量的关系应该是线性的(也即特征值和预测值是线性相关...

2020-02-10 11:12:29 904 1

原创 机器学习-简单线性回归

简单线性回归使用单一特征来预测相应值这是一种基于自变量值(X)来预测因变量值(Y)的方法。假设这两个变量是线性相关的。因此,我们尝试寻找一种根据特征或自变量(X)的线性函数来精确预测相应值(Y)。怎么找到最佳的拟合线在这个回归任务中,我们将预测一个学生根据所学习的小时数来计算分数的百分比。所以我们将通过找到“最佳拟合线”来最小化预测误差——回归线的误差将是最小的。我们试图最小化观测值...

2020-02-09 21:40:03 264

原创 机器学习-day1数据预处理

数据预处理第1步:导入需要的库。NumPy:包含数学计算函数Pandas:用于导入和管理数据集这两个是我们每次都需要导入的库。import numpy as npimport pandas as pd第2步:导入数据集数据集通常是.csv格式。csv文件以文本形式保存表格数据。文件的每一行是一条数据记录。我们使用Pandas的read_csv方法读取本地csv文件为一个数据帧...

2020-02-09 16:44:38 283

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除