对于给出的 k k k 张截图,我们能够从每张截图得到的信息就是除第一个元素外其他元素的相对顺序
举个例子:假如答案之一为 1 1 1 3 3 3 2 2 2 4 4 4 ,我们给出一张截图 3 3 3 1 1 1 2 2 2 4 4 4 ,由于 3 3 3 是否被提到数列前对于其他元素的相对顺序是没有任何影响的,我们可以得出 1 1 1 在 2 2 2 之前(但不一定相邻), 2 2 2 在 4 4 4 之前(但不一定相邻)的相对顺序,这是符合答案的
那么我们不妨记录每张截图所给的相对顺序信息,最后再进行检验,看是否有矛盾之处
这里选择用有向图来记录相对顺序,入度指向相对靠前的元素,表示一种顺序,检验时只需要判断图中是否存在环即可(如 1 − > 2 1->2 1−>2 , 2 − > 3 2->3 2−>3 , 3 − > 1 3->1 3−>1 ,出现环,相对顺序有矛盾之处,可知不存在答案)
代码如下:
#include <bits/stdc++.h>
using namespace std;
int t, n, k, a[200005], vis[200005], last, now, f, tmp;
vector<int> g[200005];
void dfs(int now) {
if (!f) return;
if (a[now]) {
f = 0;
return;
}
if (vis[now]) return;
vis[now] = 1;
a[now] = 1;
for (int &i : g[now]) dfs(i);
a[now] = 0;
}
void init(int n) {
for (int i = 1; i <= n; i++) g[i].clear(), a[i] = 0, vis[i] = 0;
}
int main() {
cin >> t;
while (t--) {
cin >> n >> k;
init(n);
f = 1;
while (k--) {
// 记录相对顺序检测环
if (n == 1) {
cin >> tmp;
continue;
}
cin >> tmp;
cin >> last;
for (int i = 3; i <= n; i++) {
cin >> now;
g[now].push_back(last);
last = now;
}
}
for (int i = 1; i <= n; i++) {
if (!vis[i]) dfs(i);
}
cout << (f ? "YES" : "NO") << '\n';
}
return 0;
}