CF1931F Chat Screenshots题解

文章讲述了如何通过有向图模型来处理一组截图中的相对顺序问题,利用深度优先搜索(DFS)检查是否存在环,以此判断序列是否有矛盾,从而确定答案是否存在。
摘要由CSDN通过智能技术生成

对于给出的 k k k 张截图,我们能够从每张截图得到的信息就是除第一个元素外其他元素的相对顺序

举个例子:假如答案之一为 1 1 1 3 3 3 2 2 2 4 4 4 ,我们给出一张截图 3 3 3 1 1 1 2 2 2 4 4 4 ,由于 3 3 3 是否被提到数列前对于其他元素的相对顺序是没有任何影响的,我们可以得出 1 1 1 2 2 2 之前(但不一定相邻), 2 2 2 4 4 4 之前(但不一定相邻)的相对顺序,这是符合答案的

那么我们不妨记录每张截图所给的相对顺序信息,最后再进行检验,看是否有矛盾之处

这里选择用有向图来记录相对顺序,入度指向相对靠前的元素,表示一种顺序,检验时只需要判断图中是否存在环即可(如 1 − > 2 1->2 1>2 2 − > 3 2->3 2>3 3 − > 1 3->1 3>1 ,出现环,相对顺序有矛盾之处,可知不存在答案)

代码如下:

#include <bits/stdc++.h>
using namespace std;

int t, n, k, a[200005], vis[200005], last, now, f, tmp;
vector<int> g[200005];
void dfs(int now) {
    if (!f) return;
    if (a[now]) {
        f = 0;
        return;
    }
    if (vis[now]) return;
    vis[now] = 1;
    a[now] = 1;
    for (int &i : g[now]) dfs(i);
    a[now] = 0;
    
}
void init(int n) {
    for (int i = 1; i <= n; i++) g[i].clear(), a[i] = 0, vis[i] = 0;
}
int main() {
    cin >> t;
    while (t--) {
        cin >> n >> k;
        init(n);
        f = 1;
        while (k--) {
            // 记录相对顺序检测环
            if (n == 1) {
                cin >> tmp;
                continue;
            }
            cin >> tmp;
            cin >> last;
            for (int i = 3; i <= n; i++) {
                cin >> now;
                g[now].push_back(last);
                last = now;
            } 
        }
        for (int i = 1; i <= n; i++) {
            if (!vis[i]) dfs(i);
        }
        cout << (f ? "YES" : "NO") << '\n';
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值