题目描述:
给你一个下标从 0 开始、由正整数组成的数组 nums 。
你可以在数组上执行下述操作 任意 次:
选中一个同时满足 0 <= i < nums.length - 1 和 nums[i] <= nums[i + 1] 的整数 i 。将元素 nums[i + 1] 替换为 nums[i] + nums[i + 1] ,并从数组中删除元素 nums[i] 。
返回你可以从最终数组中获得的 最大 元素的值。
输入
nums = [2,3,7,9,3]
输出
21
思路
1、上述题目的要求,即我们给出的数组序列中,单调递增的长度越长越好,这代表着我们最终获取到的最大元素的值也相应越大,也就是我们尽可能合并。合并的规则是要求前一个数不大于后一个数,那么为了尽可能合并成大的数,使得最终数组序列当中的排序是处于一个降序的状态,我们从后往前进行合并,尽可能贪心的去合并两个数。
代码
public long maxArrayValue(int[] nums) {
int len = nums.length;
// 比的是谁的递增序列长 并且合并之后需要再遍历一次是否能够合并
long sum = nums[len - 1];
for(int i = len - 2;i >= 0;i--){
sum = nums[i] <= sum? nums[i] + sum : nums[i];
}
return sum;
}
总结
如果从前往后进行遍历,那么如果是出现了[5,3,3]这种案例的情况,会发现后面的3和3进行合并之后,数组变成了[5,6],这个时候我们还需要再合并,这并不符合贪心的思想,并且我们需要遍历多次。这时候使用栈的话就比较麻烦,从后往前进行遍历的思想是能够一次性进行处理的,其中
sum = nums[i] <= sum ? nums[i] + sum : nums[i]
这个是能够很好地处理这个求和的问题。