遥感光谱响应函数相关

landsat8与sentinel2进行标准化处理的过程

首先我们需要知道卫星传感器的的光谱响应函数,网址如下:
[常见卫星的光谱响应函数](https://nwp-saf.eumetsat.int/site/software/rttov/download/coefficients/spectral-response-functions/)

过程:

  1. 获取光谱响应函数数据:从Landsat 8和Sentinel 2官方网站或其他数据源中,可以获取它们的光谱响应函数数据。这些数据包括波段范围、波段中心、响应值等参数。

  2. 转换为标准化光谱响应函数:使用MODIS光谱响应函数作为标准化光谱响应函数,将Landsat 8和Sentinel 2的光谱响应函数与MODIS光谱响应函数进行比较,找到它们之间的对应关系,然后将Landsat 8和Sentinel 2的光谱响应函数转换为标准化光谱响应函数。这个过程可以使用多项式拟合或插值等方法进行。

  3. 转换为标准化波段:将Landsat 8和Sentinel 2的波段转换为标准化波段,即将它们的波段范围和波段中心转换为MODIS的标准化波段。这个过程需要使用MODIS的光谱响应函数来进行波段匹配和转换。

  4. 光谱重采样:将Landsat 8和Sentinel 2的数据进行光谱重采样,使它们具有相同的光谱分辨率和波段宽度。这个过程可以使用线性插值或多项式拟合等方法进行。

  5. 数据处理:将Landsat 8和Sentinel 2的数据进行处理,如大气校正、辐射定标等,然后进行比较和融合。比如,可以使用遥感图像分类等方法,将它们的数据进行分类,以获得地表覆盖信息。

    总之,标准化处理是将不同卫星传感器的数据进行比较和融合的重要步骤。在对Landsat 8和Sentinel 2进行标准化处理时,需要使用MODIS的光谱响应函数作为标准化光谱响应函数,并将它们的光谱响应函数、波段和数据进行匹配、转换和重采样等处理,以获得可靠的地表覆盖信息。

步骤2:

import numpy as np
from scipy.interpolate import interp1d

# MODIS标准化光谱响应函数
MODIS_RSR = np.loadtxt('MODIS_RSR.txt')

# Landsat 8光谱响应函数
L8_RSR = np.loadtxt('L8_RSR.txt')

# Sentinel 2光谱响应函数
S2_RSR = np.loadtxt('S2_RSR.txt')

# 使用插值函数将Landsat 8光谱响应函数转换为MODIS标准化光谱响应函数
f_L8 = interp1d(L8_RSR[:, 0], L8_RSR[:, 1], kind='linear')
L8_RSR_std = np.zeros_like(MODIS_RSR)
L8_RSR_std[:, 0] = MODIS_RSR[:, 0]
L8_RSR_std[:, 1] = f_L8(MODIS_RSR[:, 0])

# 使用插值函数将Sentinel 2光谱响应函数转换为MODIS标准化光谱响应函数
f_S2 = interp1d(S2_RSR[:, 0], S2_RSR[:, 1], kind='linear')
S2_RSR_std = np.zeros_like(MODIS_RSR)
S2_RSR_std[:, 0] = MODIS_RSR[:, 0]
S2_RSR_std[:, 1] = f_S2(MODIS_RSR[:, 0])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值