题目来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/climbing-stairs
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?
注意:给定 n 是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
我们先从数字开始入手:(rs设为答案)
n = 1,rs = 1
n = 2,rs = 2
n = 3,rs = 3
n = 4,rs = 5
n = 5,rs = 8
……
相信已经能发现规律了,就是
rs(n) = rs(n - 1) + rs(n - 2)
我们分析一下也能得出这个结论,就是每次只能走一个台阶或者两个台阶,那就是往前一个台阶和往前两个台阶的和。得到这个结论就很好写代码了。
class Solution {
public int climbStairs(int n) {
if (n == 1 || n == 2) {
return n;
}
int pre1 = 1, pre2 = 2;
int rs = pre1 + pre2;
for (int i = 3; i < n; i++) {
pre1 = pre2;
pre2 = rs;
rs = pre1 + pre2;
}
return rs;
}
}