- 博客(150)
- 收藏
- 关注
原创 「Mac畅玩AIGC与多模态41」开发篇36 - 用 ArkTS 构建聚合搜索前端页面
本文介绍了如何基于Python实现的双通道搜索服务,构建一个完整的HarmonyOS ArkTS前端页面。用户可以通过输入关键词实时查询本地服务,并自动渲染返回的搜索结果。文章详细说明了开发目标、目录结构、关键代码实现以及运行效果。通过该示例,开发人员可以快速将本地服务能力集成到HarmonyOS App中,用于搭建多模态查询工具或独立智能体前端。下一步可考虑引入分页、加载动画或语音输入等多模态交互能力。
2025-05-17 20:33:02
679
原创 「Mac畅玩AIGC与多模态40」开发篇35 - 用 Python 开发服务对接 SearxNG 与本地知识库
本文介绍如何使用 Python 构建一个双通道搜索服务接口,集成本地聚合搜索引擎 SearxNG 和本地知识库,并返回标准化的 JSON 数据。该接口适用于智能体插件系统,支持本地 Agent 应用开发和 Dify 插件集成。文章详细说明了目标功能,包括通过 Flask 实现搜索服务端接口、封装 SearxNG 和知识库检索请求、整合搜索结果并返回统一格式。目录结构展示了项目文件布局,包括主服务入口、知识库内容、FAISS 索引文件和构建脚本。安装依赖部分列出了所需的 Python 包。知识库文件 kb_d
2025-05-16 19:07:36
2097
原创 「Mac畅玩AIGC与多模态39」开发篇34 - 插件评分结果的格式化展示工作流设计
本文详细介绍了如何构建一个完整的插件评分结果展示工作流。该工作流通过用户输入、关键词提取、插件调用、打分筛选、结构化提取和格式化展示等步骤,实现了对插件评分结果的可控展示。具体流程包括:用户输入后,通过LLM节点提取关键词,并行调用SearxNG网页搜索和本地知识库插件,使用LLM节点进行打分筛选,并通过结构化输出字段提取结果,最终通过模板转换节点格式化为Markdown卡片样式,适用于前端界面渲染。测试结果表明,该工作流能够有效提升插件评分结果的准确性和可读性,为多端展示和结果精炼提供了基础结构。
2025-05-15 19:33:28
992
原创 「Mac畅玩AIGC与多模态38」开发篇33 - 插件结果打分与筛选策略设计
本文介绍了一种通过引入LLM节点来提升插件结果质量控制的方法。首先,插件节点保持不变,包括SearxNG和知识库搜索。接着,增加了一个“筛选与打分LLM节点”,该节点负责对插件返回的多个结果进行初步判断与筛选,去除重复、不相关或无效项,并输出最多3~5条打分最高的结构化结果。最后,添加了一个“统一输出(格式化)LLM节点”,将筛选后的内容按Markdown区块格式输出。通过测试与验证,该方法有效提升了智能体信息可信度与专业性。未来可探索打分依据自定义、用户反馈调节等更动态的打分策略。
2025-05-14 19:50:16
367
原创 「Mac畅玩AIGC与多模态37」开发篇32 - 基于工作流的双插件信息整合与展示优化
本文介绍了如何在工作流应用中实现双插件调用,并通过LLM节点进行关键词提取和结果格式化。首先,确保SearxNG和本地知识库插件已部署并可用。接着,创建工作流应用,添加用户输入节点、关键词提取节点、两个插件节点以及结果格式化节点,最后连接并发布工作流。测试验证了工作流能够准确提取关键词并格式化输出搜索结果。该方法提高了插件调用的精准度和输出结构的规范性,为构建结构化问答系统奠定了基础。
2025-05-14 19:48:45
564
原创 「Mac畅玩AIGC与多模态36」开发篇31 - 基于 Agent 的双插件联合搜索设计
本文介绍了如何在 Dify 智能体(Agent)中同时接入 SearxNG 插件和本地知识库搜索插件,实现双路并发调用。通过配置提示词,系统能够同时调用两个插件,并合并展示搜索结果,输出格式包括来源、标题、摘要和链接。文章详细说明了创建智能体应用的步骤,包括新建应用、添加插件、配置提示词和发布应用。最后,通过测试问题验证了系统的预期输出,并总结了该方法的灵活性和适用场景。
2025-05-13 08:15:00
923
原创 「Mac畅玩AIGC与多模态35」开发篇30 - 将知识库搜索能力封装为 Dify 插件并注册使用
本文介绍了如何将本地知识库搜索服务封装为符合 OpenAPI 3.0 标准的插件,并注册到 Dify 工具平台中。首先,通过编写 OpenAPI Schema 文档,定义了插件的接口和数据结构。接着,在 Dify 后台创建自定义插件,填写基本信息并输入 Schema 内容。随后,通过测试接口验证插件的可用性,确保其能够正确返回搜索结果。最后,成功将插件注册到 Dify 平台,为后续在智能体和工作流中调用该搜索能力奠定了基础。这一过程为文档增强型问答的实现提供了技术支持。
2025-05-13 08:00:00
392
原创 「Mac畅玩AIGC与多模态34」开发篇29 - 开发知识库搜索插件服务端
本文介绍了如何基于本地 Embedding 模型与知识库文档,开发一个标准化的知识库搜索服务,并提供 RESTful 接口供 Dify 插件系统调用。文章详细说明了开发目标、环境准备、服务端实现步骤,包括目录结构、依赖安装、知识库内容准备、向量索引构建以及核心代码示例。通过 Flask 框架和 FAISS 或 SentenceTransformers 工具,实现了支持关键词查询并返回结构化 JSON 结果的接口。最后,文章总结了该服务的独立运行能力,并为后续插件封装和 API 发布奠定了基础。
2025-05-12 08:15:00
439
原创 「Mac畅玩AIGC与多模态33」开发篇28 - 搜索结果精炼与图文卡片展示优化
本文介绍了如何通过关键词筛选、来源过滤及图文卡片排版,提升搜索结果的信息密度与展示效果。具体步骤包括:从插件返回结果中筛选符合条件的条目,提取核心字段(标题、摘要、链接、图片),并按统一的Markdown图文卡片格式输出。测试方法验证了筛选、字段完整性和格式规范性。最终目标是形成高质量的输出模板,适用于智能体场景,并可通过插件调用链和用户上下文适配策略进一步优化。
2025-05-12 08:00:00
558
原创 「Mac畅玩AIGC与多模态32」开发篇27 - 格式化展示 SearxNG 搜索结果的智能体应用设计
本文介绍了如何通过格式化方式优化 SearxNG 搜索插件在 Dify 中的输出能力,以提升搜索结果的可读性和结构化展示。主要步骤包括从 JSON 结果中提取关键字段(标题、摘要、链接),并将其转换为 Markdown 列表格式。提示词经过优化,确保智能体在调用插件时能准确提取并展示前三条搜索结果,同时禁止虚构或润色内容。测试验证了智能体能够正确解析 JSON 数据并生成整洁、可读的 Markdown 格式结果。未来可进一步扩展为图文卡片或 HTML 区块等更丰富的展示形式。
2025-05-11 08:15:00
217
原创 「Mac畅玩AIGC与多模态31」开发篇26 - 基于 SearxNG 的搜索插件开发与接入 Dify 智能体
本文详细介绍了如何将本地部署的 SearxNG 搜索引擎封装为 OpenAPI 插件,并通过 Dify 智能体应用集成该插件,实现调用本地搜索功能的 Agent 应用开发。文章从环境准备、插件创建、测试到最终应用集成的步骤进行了详细说明,并提供了具体的代码示例和操作截图。通过本实践,开发者可以成功将本地搜索功能集成到智能体应用中,实现根据用户问题实时调用 SearxNG 搜索并返回内容的目标。这一过程为后续集成更多本地工具和 REST API 提供了标准模板。
2025-05-11 08:00:00
741
原创 「Mac畅玩AIGC与多模态30」部署篇04 - 在本地部署 SearxNG 搜索引擎
本文详细介绍了在 macOS 系统上本地部署 SearxNG 搜索引擎服务的步骤。SearxNG 是一个开源的元搜索引擎,支持聚合多个搜索源,并具备隐私保护和可定制性强的特点。部署过程包括环境准备、创建项目目录、配置 settings.yml 和 docker-compose.yml 文件,以及启动 Docker 容器。通过浏览器或 curl 命令可以测试 JSON 接口,验证服务是否正常运行。文章还提供了处理初始设置提示的方法,并强调了无需 API Key 即可直接调用接口的便利性。最终,部署的 Sear
2025-05-10 08:15:00
1253
原创 「Mac畅玩AIGC与多模态29」开发篇25 - 利用判断节点与代码节点批量筛选结构化内容
本文介绍了如何在 Dify 工作流中使用 判断节点(If Node) 和 代码节点(Code Node) 实现对结构化数组的条件判断与筛选标记。通过创建“任务筛选标记器”应用,用户可以将输入的多项内容转换为数组,并使用 Python 代码对每项内容进行标记,最终输出带有标记的结果。该方法适用于关键词提取、内容分级等批量决策任务,并可通过扩展判断节点、插件节点等方式进一步优化流程,为复杂逻辑控制提供基础。
2025-05-10 08:00:00
870
原创 「Mac畅玩AIGC与多模态28」开发篇24 - 使用模板转换节点拼接多段文本输出示例
本文介绍了如何在 Dify 平台中使用模板转换节点(Template Join)将数组格式的内容拼接为整段文本。通过创建和配置工作流,用户可以设置模板拼接规则,使用分隔符连接数组字段,并生成自然语言格式的输出段落。具体步骤包括新建工作流应用、配置开始节点、添加执行 LLM 节点、设置模板转换节点以及发布和测试工作流。本文还提供了输入和输出示例,展示了如何将多个关键词转换为建议性语句。通过本案例,用户可以掌握模板转换节点的基本用法,适用于兴趣清单处理、结果归纳等多项内容合成任务。
2025-05-09 18:39:20
318
原创 「Mac畅玩AIGC与多模态27」开发篇23 - 多任务摘要合成与提醒工作流示例
本文介绍了如何在Dify平台上利用LLM(大语言模型)处理用户的多任务输入,生成自然语言风格的任务摘要和提醒。首先,在macOS系统中部署Dify平台,并创建一个名为“多任务摘要提醒示例”的工作流应用。通过配置输入变量(如task_list)和执行LLM节点,系统能够自动提取任务、生成提醒建议,并整合为一段简洁的中文段落。测试结果显示,输入“回复客户邮件、撰写月报、处理财务报表、开项目会议”后,系统输出了一段鼓励用户高效完成任务的提醒。本文总结了多任务自然语言输入的处理方式,展示了如何利用LLM实现任务驱动
2025-05-09 18:37:18
325
原创 「Mac畅玩AIGC与多模态26」开发篇22 - 多项兴趣格式化建议输出工作流示例
本文介绍了一个简化版的工作流设计,旨在通过大型语言模型(LLM)处理用户兴趣内容。工作流在Dify平台上实现,包括创建应用、配置输入变量、添加LLM节点和结束节点等步骤。LLM节点负责提取用户兴趣关键词并生成个性化建议,最终合并为一段流畅的中文文本。通过测试,工作流成功将用户兴趣转化为鼓励性建议,展示了其在兴趣推荐和内容归纳等轻量场景中的应用潜力。此案例为后续更复杂的内容处理任务奠定了基础。
2025-05-08 20:39:41
624
原创 「Mac畅玩AIGC与多模态25」开发篇21 - 用户画像生成与摘要输出工作流示例
本文介绍了如何在 Dify 平台上通过用户多维输入生成简洁的用户画像摘要。首先,开发人员需在 macOS 系统上部署 Dify 平台,并创建工作流应用。接着,配置输入变量(如用户姓名、年龄段、职业和兴趣爱好),并通过执行 LLM 节点生成结构清晰的用户画像摘要。最后,发布工作流并进行测试,确保输出符合预期。本文还提供了输入输出示例,展示了如何将用户信息整合为一段自然、简洁的中文描述。该案例适用于个性化推荐、行为分析等场景,是用户中心内容生成的重要工具。
2025-05-08 20:38:00
698
原创 「Mac畅玩AIGC与多模态24」开发篇20 - 多语言输出工作流示例
本篇介绍如何根据用户选择的语言,动态生成多语言版本的输出内容。开发人员将学习如何配置语言下拉输入、使用条件判断节点切换提示词,并实现统一格式输出,适用于国际化应用、语言切换展示、全球用户支持等场景。使用下拉选项输入控制语言分支判断节点多分支处理逻辑多语言文本模板的构建与统一格式输出本案例适用于国际化支持、客户问候、多语种播报等典型场景,是提升多模态交互多语言能力的关键实践。
2025-05-07 18:45:23
606
原创 「Mac畅玩AIGC与多模态23」开发篇19 - Markdown 富文本输出工作流示例
本篇基于格式化文本整合的经验,进一步介绍如何通过 LLM 输出标准 Markdown 内容,并在前端正确渲染出标题、列表、加粗等富文本格式,提升展示效果与内容结构可读性。使用 LLM 输出 Markdown 格式内容控制提示词结构与输出规范富文本格式内容在 Dify 中的展示能力本案例可用于 FAQ 自动生成、课程推荐、报告生成等场景,是结构化输出到前端展示的关键环节。
2025-05-07 18:43:01
513
原创 「Mac畅玩AIGC与多模态22」开发篇18 - 多段输出拼接与格式化展现工作流示例
本篇以已有多字段输出为基础,介绍如何通过执行 LLM 节点对多个上游字段进行统一拼接与格式化处理。开发人员将学习如何从多个节点输出中提取数据字段,并组合为结构清晰、风格统一的最终输出,提升用户阅读体验。多个字段内容的格式化组合方法上下游节点字段引用与整合提示词控制文本风格与输出结构本案例为多信息整合输出提供实践范式,为构建完整模板渲染、报告生成、个性化消息通知等提供了基础模板结构。
2025-05-06 21:29:32
601
原创 「Mac畅玩AIGC与多模态21」开发篇17 - 多字段判断与多路径分支工作流示例
本篇在结构化输出字段控制流程的基础上,进一步引入多字段联合判断与多路径分支控制。通过综合分析用户输入的情绪类型和紧急程度,实现三分支路径执行逻辑,开发人员将掌握复杂流程中多条件判断节点的配置技巧。多字段结构化识别与 Schema 编写判断节点的多条件分支配置方式工作流中多路径执行与结果合并本案例是实现条件驱动多策略处理流程的重要模板,为后续状态切换、多变量聚合与个性化输出奠定结构基础。
2025-05-06 21:28:08
557
原创 「Mac畅玩AIGC与多模态20」开发篇16 - 使用结构化输出字段控制后续流程示例
本篇介绍如何在工作流中使用结构化输出字段作为判断依据,实现前后节点联动控制。通过执行 LLM 节点输出结构化 JSON,并使用其中的字段驱动后续判断节点执行不同路径,开发人员将掌握结构化字段在工作流中的引用方式与分支控制技巧。执行 LLM 节点的结构化输出配置方法如何引用结构字段进行判断分支将结构化结果驱动流程逻辑本案例为结构化信息控制流程提供了可实践范式,为后续多字段控制、数据验证与自动分类处理打下基础。
2025-05-05 21:46:23
565
原创 「Mac畅玩AIGC与多模态19」开发篇15 - 判断节点与工具节点联动示例
本篇在引入工具节点的基础上,进一步结合判断节点(条件分支),实现根据用户输入内容动态控制是否调用外部接口。通过构建“用户是否需要天气信息”的条件逻辑,开发人员将掌握如何在 Dify 工作流中通过条件判断联动工具节点,提升流程智能性与可控性。判断节点的条件配置方式如何根据条件控制工具节点是否执行分支输出结果的统一汇总逻辑本案例作为流程控制进阶版,结合判断与工具调用,为构建更智能、灵活的业务处理流程提供了实战范例。
2025-05-05 21:44:00
512
原创 「Mac畅玩AIGC与多模态18」开发篇14 - 多字段输出与结构控制工作流示例
本篇在输入变量基础上,演示如何通过执行 LLM 节点输出多个结构化字段,并传递至结束节点。开发人员将掌握如何配置结构化输出格式,实现提示词与字段的准确映射,为后续引入条件判断、循环结构等逻辑控制建立结构输出规范基础。多输入字段配置与引用LLM 结构化输出机制配置JSON Schema 的使用方法输出字段在结束节点的选择与展示本案例为进入复杂逻辑流程(如条件判断、循环节点)提供结构输出的实践基础,确保后续节点能够按字段引用,提升流程配置的灵活性与规范性。
2025-05-04 20:55:45
626
原创 「Mac畅玩AIGC与多模态17」开发篇13 - 条件判断与分支跳转工作流示例
本篇在多节点串联的基础上,进一步引入条件判断与分支跳转机制,实现根据用户输入内容动态走不同执行路径。开发人员将学习如何配置判断节点、定义分支规则,以及如何在工作流中引导执行方向,完成基础的逻辑控制。判断节点的使用方式设置分支条件与跳转路径针对不同输入设计不同应答逻辑工作流中逻辑分支的基本实现方法本案例作为工作流逻辑控制的入门版,帮助开发人员建立对流程条件判断与动态跳转的理解,为后续引入嵌套判断、多级分支、变量驱动控制等打下基础。
2025-05-04 20:54:08
399
原创 「Mac畅玩AIGC与多模态16」开发篇12 - 多节点串联与输出合并的工作流示例
本篇在输入变量与单节点执行的基础上,扩展实现多节点串联与格式化合并输出的工作流应用。开发人员将掌握如何在 Dify 工作流中统一管理输入变量,通过多节点串联引用,生成规范统一的最终输出,为后续构建复杂逻辑流程打下基础。统一输入变量管理多执行节点串联与引用变量格式化合并输出控制工作流标准化配置与输出闭环本案例作为单节点输出进阶版,进一步训练了工作流的变量流转与数据整合能力,为后续引入条件判断、循环控制、子流程分发等复杂逻辑处理打下坚实基础。
2025-05-03 18:23:59
1108
1
原创 「Mac畅玩AIGC与多模态15」开发篇11 - 增加输入变量的工作流示例
本篇在固定输出的基础上,扩展实现带输入变量的单节点工作流。开发人员将掌握如何在 Dify 工作流中添加输入字段,并在提示词中动态引用输入,生成灵活的响应内容,作为进一步复杂化流程设计的初步练习。在开始节点中添加输入变量在执行 LLM 节点中引用输入变量实现根据用户输入动态变化的输出内容本案例在基础版的固定输出基础上,进一步引入了输入变量机制,为后续构建更复杂、具备交互逻辑的工作流打下基础。
2025-05-03 18:21:45
435
原创 「Mac畅玩AIGC与多模态14」开发篇10 - 固定文本输出工作流示例
本篇通过在 macOS 环境下搭建 Dify 平台工作流,创建一个无输入、单节点执行、固定文本输出的最小工作流应用。目标是帮助开发人员掌握工作流的基本创建流程、节点添加与简单输出机制,作为后续复杂工作流设计的基础入门练习。工作流基本创建流程执行 LLM 节点的添加与配置添加结束节点,规范流程闭环无输入、固定输出场景的快速搭建方法本案例作为极简入门版,帮助开发人员建立对 Dify 工作流机制的直观理解,为后续逐步引入输入、插件调用、多节点联动打下基础。
2025-05-02 19:16:16
450
原创 「Mac畅玩AIGC与多模态13」开发篇09 - 基于多插件协同开发智能体应用(天气+名言查询助手)
本篇介绍如何在 macOS 环境下,同时接入多个自定义 OpenAPI 插件,实现智能体根据用户请求自动分析,调用天气查询或名言查询服务,完成多功能协同应用开发。选择已创建的 Weather Query Plugin,直接添加到新应用中。同时接入多插件的配置技巧根据问题内容自动调用对应插件的应用逻辑培养智能体多功能协同应用基础本案例是进入复杂工具协同智能应用的重要跨越点,为后续符合复杂场景需求打下基础。
2025-05-02 19:14:11
783
原创 「Mac畅玩AIGC与多模态12」开发篇08 - 使用自定义汇率查询插件开发智能体应用
本篇介绍如何在 macOS 环境下,通过编写自定义 OpenAPI Schema,将实时汇率查询服务接入 Dify 平台,并开发基于外部金融数据的智能体应用。本案例继续实践 GET 请求型 API 的实际调用技巧,应用范围扩展到金融领域。登录 Dify 后台点击「工具」栏目,选择「自定义」,点击「创建自定义工具」填写基本信息:插件名称:Currency Exchange Plugin工具栏点击「添加」选择 Currency Exchange Plugin。
2025-05-01 18:15:37
854
原创 「Mac畅玩AIGC与多模态11」开发篇07 - 使用自定义名言插件开发智能体应用
本篇介绍如何在 macOS 环境下,通过编写自定义 OpenAPI Schema,将无需认证的名言服务接入 Dify 平台,并开发基于外部公共数据的智能体应用。本案例继续实践 GET 请求型 API 的实际调用技巧。登录 Dify 后台点击「工具」栏目,选择「自定义」,点击「创建自定义工具」填写基本信息:插件名称:Quote Plugin工具栏点击「添加」选择 Quote Plugin处理返回 JSON 数组的 GET 请求型插件 Schema 编写技巧。
2025-05-01 18:13:16
353
原创 「Mac畅玩AIGC与多模态10」开发篇06 - 使用自定义翻译插件开发智能体应用
本篇介绍如何在 macOS 环境下,通过编写自定义 OpenAPI Schema,将无需认证的翻译服务接入 Dify 平台,并开发基于实时翻译的智能体应用。本案例培养单提参数 API 调用技巧,实现智能体的实时转换能力。登录 Dify 后台点击「工具」栏目,选择「自定义」,点击「创建自定义工具」填写基本信息:插件名称:Translation Plugin工具栏点击「添加」选择 Translation PluginGET 请求型 API 插件的 OpenAPI Schema 编写技巧。
2025-04-30 19:26:46
662
原创 「Mac畅玩AIGC与多模态09」开发篇05 - 使用自定义天气查询插件开发智能体应用
本篇介绍如何在 macOS 环境下,通过编写自定义 OpenAPI Schema,将天气查询服务接入 Dify 平台,并开发基于实时天气信息的智能体应用。本案例培养路径参数与查询参数结合的插件开发技巧,实现智能体和外部实时数据的动态联动。登录 Dify 后台点击「工具」栏目,选择「自定义」,点击「创建自定义工具」填写基本信息:插件名称:Weather Query Plugin进入应用配置界面点击「工具」→「添加」选择刚刚创建的 Weather Query Plugin。
2025-04-30 19:24:26
1313
原创 「Mac畅玩AIGC与多模态08」开发篇04 - 基于 OpenAPI Schema 开发专用 Agent 插件
本篇介绍如何在 macOS 环境下,通过编写 OpenAPI Schema,开发自定义的专用插件,让智能体可以调用外部 API,扩展功能至任意在线服务。实践内容基于 Dify 平台,适配 macOS 开发环境。登录 Dify 后台依次进入「工具」→「自定义」→「创建自定义工具」填写基本信息:在应用配置界面,点击「工具」→「添加」选择刚刚创建的理解并编写基础的 OpenAPI Schema 文档在 Dify 平台创建并注册自定义插件构建 Agent 应用并集成插件调用。
2025-04-29 21:48:46
1346
原创 「Mac畅玩AIGC与多模态07」开发篇03 - 开发第一个 Agent 插件调用应用
本篇介绍如何在 macOS 环境下,基于 Dify 平台自带的网页爬虫插件工具,开发一个可以提取网页内容并作答的 Agent 应用。通过使用内置插件,无需自定义开发,即可实现基本的网页信息提取与智能体回答整合。本地部署支持 Function Calling 的 llama3.2:1b 模型使用 Dify 自带网页爬虫插件,快速实现网页内容提取与回答整合成功开发第一个基于系统插件的智能体应用后续将在下一篇介绍如何基于自定义 OpenAPI Schema 开发自己的专用插件,进一步扩展智能体能力。
2025-04-29 21:46:01
764
原创 「Mac畅玩AIGC与多模态06」开发篇02 - 开发第一个知识库问答应用
本篇介绍如何在 macOS 环境下,基于已部署完成的本地 LLM 模型与向量化模型,开发第一个 Dify 知识库问答应用,实现文档检索、知识问答和上下文增强功能。通过本篇开发流程,已基于本地部署的 LLM 模型与 Embedding 模型,在 Dify 平台成功创建了第一个知识库问答应用,具备文档检索与知识增强能力。后续可在此基础上进一步接入插件扩展功能,实现更丰富的智能体应用场景。
2025-04-28 22:20:10
364
原创 「Mac畅玩AIGC与多模态05」部署篇03 - 在 Mac 上部署本地向量化模型(Embedding Models)
本篇介绍如何在 macOS 环境下,为 Dify 平台部署本地向量化模型(Embedding Models),支持知识库文档向量化、语义检索与智能体上下文增强。向量化模型是实现知识库问答与 RAG(检索增强生成)应用的基础组件。通过本篇部署流程,已在 macOS 环境下完成本地向量化模型部署,并成功接入 Dify 平台,实现文档向量化索引功能。Embedding 模型是知识检索、上下文增强、多轮对话的重要支撑,为后续构建完整的 RAG 应用体系打下了坚实基础。
2025-04-28 22:17:35
1397
原创 「Mac畅玩AIGC与多模态04」开发篇01 - 创建第一个 LLM 对话应用
本篇介绍如何在 macOS 环境下,基于已部署完成的 Dify 平台和本地 LLM 模型(如 DeepSeek),创建并测试第一个基础对话应用,实现快速验证推理服务与平台交互功能。通过本篇流程,已基于本地部署的 LLM 模型与 Dify 平台,成功创建并测试了第一个基础对话应用。此应用不依赖知识库与插件,仅使用大语言模型进行推理交互,适合作为平台功能验证与后续应用开发的基础。后续可以在此基础上逐步接入知识库增强检索、插件扩展功能,构建更复杂的智能体应用体系。
2025-04-27 21:31:34
434
原创 「Mac畅玩AIGC与多模态03」部署篇02 - 在 Mac 上部署 Dify
本篇介绍如何在 macOS 环境下本地部署 Dify 平台,作为多模型协同与工作流集成的可视化应用服务。Dify 提供了模型调用、对话管理、知识库问答、插件服务等功能,可与 Ollama、OpenAI、DeepSeek 等推理后端集成,适用于本地智能体应用的快速搭建与扩展。通过本篇部署流程,已完成在 macOS 环境下基于 Docker 启动 Dify 服务,并成功接入本地 Ollama 推理接口,构建具备多模型协作与智能体开发能力的 AIGC 平台。
2025-04-27 21:26:37
983
原创 「Mac畅玩AIGC与多模态02」部署篇01 - 在 Mac 上部署 Ollama + Open WebUI
本篇介绍如何在 macOS 环境下本地部署 Ollama 推理服务,并通过 Open WebUI 实现可视化交互界面。该流程无需 CUDA 或专用驱动,适用于 M 系列或 Intel 芯片的 Mac,便于快速测试本地大语言模型能力。通过本篇部署流程,已完成在 macOS 下基于 Ollama 本地推理服务的配置,并结合 Open WebUI 搭建可视化模型调用平台,适用于本地轻量测试、API 对接与插件开发等场景。
2025-04-27 21:13:26
1256
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人