分治——路由器安置问题
题设:一条街道安装无线网络,需要放置M个路由器。整条街道上一共有N户居民,分布在一条直线上,每一户居民必须被至少一台路由器覆盖到。现在的问题是所有路由器的覆盖半径是一样的,我们希望用覆盖半径尽可能小的路由器来完成任务,因为这样可以节省成本。
数据结构:h[n] n个居民的一维地址,路由器的数量m
cover函数检测该直径是否足够覆盖该地址
upper_bound(h+1,h+N+1,h[temp]+d)-h;是二分函数;给出数组范围内第一个>=Value的值的地址,只能用于排好序的数组;
求最小半径值先订一个范围路由器的半径为0~(h[n]-h[1])/m,在这个范围中用二分法寻找半径值;每得到到一个二分值就检测该值是否能覆盖到全部居民;
检测方法:在h[1]+r处建立一个路由器,然后找到第一个大于h[1]+d的居民地址,安置路由器,循环;当路由器数量足够时说明该半径足够大;
#include<iostream>
#include<stdio.h>
#include<vector>
#include<queue>
#include<string.h>
#include <algorithm>
#define MAXN 100010
using namespace std;
int h[MAXN],n,m;
int M,N;
int cover(int d);
int main(){
scanf("%d%d",&M,&N);
for(int i=1;i<=N;i++){
scanf("%d",&h[i]);
}
sort(h+1,h+N+1);
int low=0,high=(h[N]-h[1])/M;
while(low<high){
int mid=(low+high)/2;
if(cover(mid))high=mid;
else
low=mid+1;
}
printf("%.1lf",(double)low/2.0);
}
int cover(int d){
int temp=1,M_temp=0;
while(h[temp]+d<h[N]){
M_temp++;
if(M_temp>=M)
return 0;
temp=upper_bound(h+1,h+N+1,h[temp]+d)-h;
}
return 1;
}