二分查找:Python实现(循环&递归)
维基百科:
在计算机科学中,二分搜索(英语:binary search),也称折半搜索(英语:half-interval search),对数搜索(英语:logarithmic search),是一种在有序数组中查找某一特定元素的搜索算法。搜索过程从数组的中间元素开始,如果中间元素正好是要查找的元素,则搜索过程结束;如果某一特定元素大于或者小于中间元素,则在数组大于或小于中间元素的那一半中查找,而且跟开始一样从中间元素开始比较。如果在某一步骤数组为空,则代表找不到。这种搜索算法每一次比较都使搜索范围缩小一半。
二分搜索算法
分类搜索算法数据结构数组
最坏时间复杂度{\displaystyle O(\log n)}
最优时间复杂度{\displaystyle O(1)}
平均时间复杂度{\displaystyle O(\log n)}
最坏空间复杂度迭代:{\displaystyle O(1)}
递归:{\displaystyle O(\log n)}
二分搜索在情况下的复杂度是对数时间,进行{\displaystyle O(\log n)} 次比较操作({\displaystyle n} 在此处是数组的元素数量,{\displaystyle O} 是大O记号,{\displaystyle \log } 是对数)。二分搜索使用常数空间,无论对任何大小的输入数据,算法使用的空间都是一样的。
除非输入数据数量很少,否则二分搜索比线性搜索更快,但数组必须事先被排序。
二分搜索只对有序数组有效
&&不啰嗦了,上代码&&
1,循环实现
# 二分查找(while)
def binary_search(li,n):
left = 0
right = len(li) - 1
while left <= right:
mid = (right + left) // 2
if li[mid] < n:
left = mid +1
elif li[mid] > n:
right = mid - 1
else:
return mid
return 0
li = []
while 1:
a = input('请输入您要查询的数字,回车输入选一个数据,#结束:')
if a=='#':
break
a = int(a)
li.append(a)
li.sort()#二分查找的条件是要有序
print(li)
while 1:
x = input('请输入您要查询的数字:')
if x:
x = int(x)
result = binary_search(li, x)
if result == 0:
print('抱歉,您要查询的数字不在您所输入的数字集中!')
else:
print(f'您要查询的数字的索引是{result}')
else:
print('请输入数据!')
2,递归实现
# 二分查找
def binary_search(li,n,left,right):
if left <= right:#递归可以执行的条件
mid = (right + left) // 2
if li[mid] < n:
return binary_search(li,n,mid+1,right)
elif li[mid] > n:
return binary_search(li,n,left,mid-1)
else:
return mid
else:
return -1
li = []
while 1:
a = input('请输入您要查询的数字,#结束:')
if a=='#':
break
a = int(a)
li.append(a)
print(f'您所输入的数据是{li}')
li.sort()#二分查找的条件是要有序
print(f'排完序是{li}')
while 1:
x = input('请输入您要查询的数字:')
if x:
x = int(x)
left = 0
right = len(li) - 1
result = binary_search(li, x, left, right)
if result == -1:
print('抱歉,您要查询的数字不在您所输入的数字集中!')
else:
print(f'您要查询的数字的索引是{result}!')
else:
print('请输入数据!')
值得注意的是二分查找虽然时间复杂度低 但是内置函数index使用的是线性查找,因为二分查找的条件是必须有序。