【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(14):向量范数及其性质

在这里插入图片描述

前言

Hello!小伙伴!
非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出~
 
自我介绍 ଘ(੭ˊᵕˋ)੭
昵称:海轰
标签:程序猿|C++选手|学生
简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖、省奖…已保研。目前正在学习C++/Linux/Python
学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!
 
机器学习小白阶段
文章仅作为自己的学习笔记 用于知识体系建立以及复习
知其然 知其所以然!

往期文章

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(1):集合与映射

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(2):线性空间定义及其性质

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(3):线性空间的基与坐标

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(4):基变换与坐标变换

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(5):线性子空间

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(6):子空间的交与和

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(7):欧氏空间

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(8):标准正交基与Gram-Schmidt过程

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(9):正交补与投影定理

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(10):线性变换定义

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(11):线性变换的矩阵表示

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(12):相似形理论

【机器学习|数学基础】Mathematics for Machine Learning系列之矩阵理论(13):Hamliton-Cayley定理、最小多项式

4.1 向量范数及其性质

4.1.1 向量范数的概念及P-范数

设给定 n n n维向量空间 R n R^n Rn中的向量序列 { χ ( k ) } \{\boldsymbol\chi^{(k)}\} {χ(k)},其中

χ ( k ) = ( ξ 1 ( k ) , ξ 2 ( k ) , . . . , ξ n ( k ) ) k = 1 , 2 , 3 , . . . \boldsymbol\chi^{(k)}=(\xi_1^{(k)},\xi_2^{(k)},...,\xi_n^{(k)})\quad k=1,2,3,... χ(k)=(ξ1(k),ξ2(k),...,ξn(k))k=1,2,3,...

如果每一个分量 ξ i ( k ) \xi_i^{(k)} ξi(k) k → ∞ k\rightarrow\infty k时,都有极限 ξ i \xi_i ξi,即

lim ⁡ k → ∞ ξ i ( k ) = ξ i i = 1 , 2 , . . . , n \lim_{k\rightarrow\infty}\xi_i^{(k)}=\xi_i\quad i=1,2,...,n klimξi(k)=ξii=1,2,...,n

χ = ( ξ 1 , ξ 2 , . . . , ξ n ) \boldsymbol\chi=(\xi_1,\xi_2,...,\xi_n) χ=(ξ1,ξ2,...,ξn)

则称向量序列 { χ ( k ) } \{\boldsymbol\chi^{(k)}\} {χ(k)}有极限或称 { χ ( k ) } \{\boldsymbol\chi^{(k)}\} {χ(k)}收敛于 χ \boldsymbol\chi χ

简称 { χ ( k ) } \{\boldsymbol\chi^{(k)}\} {χ(k)}收敛,记为

lim ⁡ k → ∞ χ ( k ) = χ 或 χ ( k ) → χ \lim_{k\rightarrow\infty}\boldsymbol\chi^{(k)}=\boldsymbol\chi或\boldsymbol\chi^{(k)}\rightarrow\boldsymbol\chi klimχ(k)=χχ(k)χ


不收敛的向量序列称为发散的

收敛的向量序列:

χ ( k ) = [ 1 2 k sin ⁡ k k ] k = 1 , 2 , 3 , . . . \boldsymbol\chi^{(k)}=\begin{bmatrix} \frac{1}{2^k}\\ \quad\\ \frac{\sin{k}}{k} \end{bmatrix} \quad k=1,2,3,... χ(k)=2k1ksinkk=1,2,3,...

因为当 k → ∞ k\rightarrow\infty k时, 1 2 k → 0 , sin ⁡ k k → 0 \frac{1}{2^k}\rightarrow0,\frac{\sin{k}}{k}\rightarrow0 2k10,ksink0

所以

lim ⁡ k → ∞ χ ( k ) = [ lim ⁡ k → ∞ 1 2 k lim ⁡ k → ∞ sin ⁡ k k ] = [ 0 0 ] \lim_{k\rightarrow\infty}\boldsymbol\chi^{(k)}=\begin{bmatrix} \lim_{k\rightarrow\infty} \frac{1}{2^k}\\ \quad\\ \lim_{k\rightarrow\infty}\frac{\sin{k}}{k} \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \end{bmatrix} klimχ(k)=limk2k1limkksink=[00]

发散的向量序列:

χ ( k ) = [ ∑ i = 1 k 1 2 i ∑ i = 1 k 1 i ] k = 1 , 2 , 3 , . . . \boldsymbol\chi^{(k)}=\begin{bmatrix} \sum_{i=1}^{k}\frac{1}{2^i}\\ \quad\\ \sum_{i=1}^k\frac{1}{i} \end{bmatrix} \quad k=1,2,3,... χ(k)=i=1k2i1i=1ki1k=1,2,3,...

因为

∑ i = 1 k 1 2 i → 1 , 而 ∑ i = 1 k 1 i → ∞ \sum_{i=1}^{k}\frac{1}{2^i}\rightarrow1,而\sum_{i=1}^k\frac{1}{i}\rightarrow\infty i=1k2i11i=1ki1

定义4.1

如果 V V V是数域 K K K上的线性空间,且对于 V V V的任一向量 χ \boldsymbol\chi χ,对应一个实值函数 ∣ ∣ χ ∣ ∣ ||\boldsymbol\chi|| χ,它满足下面三个条件:

  • 非负性:当 χ ≠ 0 \boldsymbol\chi\neq0 χ=0时, ∣ ∣ χ ∣ ∣ > 0 ||\boldsymbol\chi||>0 χ>0;当 χ = 0 \boldsymbol\chi=0 χ=0时, ∣ ∣ χ ∣ ∣ = 0 ||\boldsymbol\chi||=0 χ=0
  • 齐次性: ∣ a χ ∣ = ∣ a ∣ ∣ ∣ χ ∣ ∣ |a\boldsymbol\chi|=|a|||\boldsymbol\chi|| aχ=aχ
  • 三角不等式: ∣ ∣ χ + ζ ∣ ∣ ≤ ∣ ∣ χ ∣ ∣ + ∣ ∣ ζ ∣ ∣ χ , ζ ∈ V ||\boldsymbol\chi+\boldsymbol\zeta||\leq||\boldsymbol\chi||+||\boldsymbol\zeta|| \quad \boldsymbol\chi,\boldsymbol\zeta\in V χ+ζχ+ζχ,ζV

则称 ∣ ∣ χ ∣ ∣ ||\boldsymbol\chi|| χ V V V χ \boldsymbol\chi χ的范数

例1

试着说明在 n n n维酉空间 C n C^n Cn上,复向量 χ = ( ξ 1 , ξ 2 , . . . , ξ n ) \boldsymbol\chi=(\xi_1,\xi_2,...,\xi_n) χ=(ξ1,ξ2,...,ξn)

χ = ( ξ 1 , ξ 2 , . . . , ξ n ) ∈ C n \boldsymbol\chi=(\xi_1,\xi_2,...,\xi_n)\in C^{n} χ=(ξ1,ξ2,...,ξn)Cn的长度

∣ ∣ χ ∣ ∣ = ∣ ξ 1 ∣ 2 + ∣ ξ 2 ∣ 2 + . . . + ∣ ξ n ∣ 2 ||\boldsymbol\chi||=\sqrt{|\xi_1|^2+|\xi_2|^2+...+|\xi_n|^2} χ=ξ12+ξ22+...+ξn2

是一种范数

解答

证非负性:

χ ≠ 0 \boldsymbol\chi\neq 0 χ=0时, ∣ ∣ χ ∣ ∣ = ∣ ξ 1 ∣ 2 + ∣ ξ 2 ∣ 2 + . . . + ∣ ξ n ∣ 2 > 0 ||\boldsymbol\chi||=\sqrt{|\xi_1|^2+|\xi_2|^2+...+|\xi_n|^2}>0 χ=ξ12+ξ22+...+ξn2 >0

当且仅当 χ = 0 \boldsymbol\chi=0 χ=0时, ∣ ∣ χ ∣ ∣ = ∣ ξ 1 ∣ 2 + ∣ ξ 2 ∣ 2 + . . . + ∣ ξ n ∣ 2 = 0 ||\boldsymbol\chi||=\sqrt{|\xi_1|^2+|\xi_2|^2+...+|\xi_n|^2}=0 χ=ξ12+ξ22+...+ξn2 =0

证齐次性:

对任意复数 a a a

∣ ∣ a χ ∣ ∣ = ∣ a ξ 1 ∣ 2 + ∣ a ξ 2 ∣ 2 + . . . + ∣ a ξ n ∣ 2 = ∣ a ∣ ∣ ξ 1 ∣ 2 + ∣ ξ 2 ∣ 2 + . . . + ∣ ξ n ∣ 2 = ∣ a ∣ ∣ ∣ χ ∣ ∣ \quad\quad||a\boldsymbol\chi||=\sqrt{|a\xi_1|^2+|a\xi_2|^2+...+|a\xi_n|^2}\\ \quad\\ \quad\quad\quad\quad\quad=|a|\sqrt{|\xi_1|^2+|\xi_2|^2+...+|\xi_n|^2}\\ \quad\\ \quad\quad\quad\quad\quad=|a|||\boldsymbol\chi|| aχ=aξ12+aξ22+...+aξn2 =aξ12+ξ22+...+ξn2 =aχ

证三角不等式:

对于任意的两个复向量 χ = ( ξ 1 , ξ 2 , . . . , ξ n ) , ζ = ( η 1 , η 2 , . . . , η n ) \boldsymbol\chi=(\xi_1,\xi_2,...,\xi_n),\boldsymbol\zeta=(\eta_1,\eta_2,...,\eta_n) χ=(ξ1,ξ2,...,ξn),ζ=(η1,η2,...,ηn),有

χ + ζ = ( ξ 1 + η 1 , ξ 2 + η 2 , . . . , ξ n + η n ) \boldsymbol\chi+\boldsymbol\zeta=(\xi_1+\eta_1,\xi_2+\eta_2,...,\xi_n+\eta_n) χ+ζ=(ξ1+η1,ξ2+η2,...,ξn+ηn)

所以

∣ ∣ χ + ζ ∣ ∣ = ∣ ξ 1 + η 1 ∣ 2 + ∣ ξ 2 + η 2 ∣ 2 + . . . + ∣ ξ n + η n ∣ 2 ||\boldsymbol\chi+\boldsymbol\zeta||=\sqrt{|\xi_1+\eta_1|^2+|\xi_2+\eta_2|^2+...+|\xi_n+\eta_n|^2} χ+ζ=ξ1+η12+ξ2+η22+...+ξn+ηn2

∣ ∣ χ + ζ ∣ ∣ 2 = ∣ ξ 1 + η 1 ∣ 2 + ∣ ξ 2 + η 2 ∣ 2 + . . . + ∣ ξ n + η n ∣ 2 = ∣ ξ 1 ∣ 2 + . . . + ∣ ξ n ∣ 2 + ∑ i = 1 n ξ i η i ˉ + ∑ i = 1 n ξ i ˉ η i + ∣ η 1 ∣ 2 + . . . + ∣ η n ∣ 2 = ∣ ∣ χ ∣ ∣ 2 + 2 R e ( χ , ξ ) + ∣ ∣ ζ ∣ ∣ 2 ≤ ∣ ∣ χ ∣ ∣ 2 + 2 ∣ ∣ χ ∣ ∣    ∣ ∣ ζ ∣ ∣ + ∣ ∣ ζ ∣ ∣ 2 = ( ∣ ∣ χ ∣ ∣ + ∣ ∣ ζ ∣ ∣ ) 2 \qquad||\boldsymbol\chi+\boldsymbol\zeta||^2=|\xi_1+\eta_1|^2+|\xi_2+\eta_2|^2+...+|\xi_n+\eta_n|^2\\ \quad\\ \qquad\qquad\qquad=|\xi_1|^2+...+|\xi_n|^2+\sum_{i=1}^{n}\xi_i\bar{\eta_i}+\sum_{i=1}^{n}\bar{\xi_i}\eta_i+|\eta_1|^2+...+|\eta_n|^2\\ \quad\\ \qquad\qquad\qquad=||\boldsymbol\chi||^2+2Re(\boldsymbol\chi,\boldsymbol\xi)+||\boldsymbol\zeta||^2\\ \quad\\ \qquad\qquad\qquad\leq||\boldsymbol\chi||^2+2||\boldsymbol\chi||\; ||\boldsymbol\zeta||+||\boldsymbol\zeta||^2\\ \quad\\ \qquad\qquad\qquad=(||\boldsymbol\chi||+||\boldsymbol\zeta||)^2 χ+ζ2=ξ1+η12+ξ2+η22+...+ξn+ηn2=ξ12+...+ξn2+i=1nξiηiˉ+i=1nξiˉηi+η12+...+ηn2=χ2+2Re(χ,ξ)+ζ2χ2+2χζ+ζ2=(χ+ζ)2


上面的推导过程来自课本,但是感觉有一点问题

首先需要知道,两个复数之和的模

比如 ∣ ξ 1 + η 1 ∣ 2 = ∣ ξ 1 ∣ 2 + ∣ η 1 ∣ 2 + ξ 1 ˉ η 1 + ξ 1 η 1 ˉ |\xi_1+\eta_1|^2=|\xi_1|^2+|\eta_1|^2+\bar{\xi_1}\eta_1+\xi_1\bar{\eta_1} ξ1+η12=ξ12+η12+ξ1ˉη1+ξ1η1ˉ

可以举一个例子,比如 ξ 1 = 1 + 2 i , η 1 = 3 − 2 i \xi_1=1+2i,\eta_1=3-2i ξ1=1+2i,η1=32i,计算一下,会发现确实是这样的

然后 ξ 1 ˉ η 1 = ξ 1 η 1 ˉ \bar{\xi_1}\eta_1=\xi_1\bar{\eta_1} ξ1ˉη1=ξ1η1ˉ

同样举一个例子就可以了

所以

∣ ξ 1 ∣ 2 + . . . + ∣ ξ n ∣ 2 + ∑ i = 1 n ξ i η i ˉ + ∑ i = 1 n ξ i ˉ η i + ∣ η 1 ∣ 2 + . . . + ∣ η n ∣ 2 = ∣ ξ 1 ∣ 2 + . . . + ∣ ξ n ∣ 2 + 2 ∑ i = 1 n ξ i η i ˉ + ∣ η 1 ∣ 2 + . . . + ∣ η n ∣ 2 \qquad|\xi_1|^2+...+|\xi_n|^2+\sum_{i=1}^{n}\xi_i\bar{\eta_i}+\sum_{i=1}^{n}\bar{\xi_i}\eta_i+|\eta_1|^2+...+|\eta_n|^2\\ \quad\\ \quad=|\xi_1|^2+...+|\xi_n|^2+2\sum_{i=1}^{n}\xi_i\bar{\eta_i}+|\eta_1|^2+...+|\eta_n|^2 ξ12+...+ξn2+i=1nξiηiˉ+i=1nξiˉηi+η12+...+ηn2=ξ12+...+ξn2+2i=1nξiηiˉ+η12+...+ηn2

可以发现

∑ i = 1 n ξ i η i ˉ = ( χ , ζ ˉ ) \sum_{i=1}^{n}\xi_i\bar{\eta_i}=(\boldsymbol\chi,\bar{\boldsymbol\zeta}) i=1nξiηiˉ=(χ,ζˉ)

ζ ˉ \bar{\boldsymbol\zeta} ζˉ表示对其中每一个复数进行操作:实部不变,虚部取反
( χ , ζ ˉ ) (\boldsymbol\chi,\bar{\boldsymbol\zeta}) (χ,ζˉ)表示两个向量的内积

利用施瓦茨不等式,有

( α , β ) ≤ ( α , α ) ( β , β ) = ∣ α ∣ ∣ β ∣ (\alpha,\beta)\leq\sqrt{(\alpha,\alpha)(\beta,\beta)}=|\alpha||\beta| (α,β)(α,α)(β,β) =αβ

所以

( χ , ζ ˉ ) ≤ ∣ χ ∣    ∣ ζ ˉ ∣ (\boldsymbol\chi,\bar{\boldsymbol\zeta})\leq|\boldsymbol\chi|\;|\bar{\boldsymbol\zeta}| (χ,ζˉ)χζˉ

又因为

∣ ζ ˉ ∣ = ∣ ζ ∣ |\bar{\boldsymbol\zeta}|=|\boldsymbol\zeta| ζˉ=ζ

所以

( χ , ζ ˉ ) ≤ ∣ χ ∣    ∣ ζ ∣ (\boldsymbol\chi,\bar{\boldsymbol\zeta})\leq|\boldsymbol\chi|\;|\boldsymbol\zeta| (χ,ζˉ)χζ

综上

∣ ξ 1 ∣ 2 + . . . + ∣ ξ n ∣ 2 + 2 ∑ i = 1 n ξ i η i ˉ + + ∣ η 1 ∣ 2 + . . . + ∣ η n ∣ 2 = ∣ ξ 1 ∣ 2 + . . . + ∣ ξ n ∣ 2 + 2 ( χ , ζ ˉ ) + ∣ η 1 ∣ 2 + . . . + ∣ η n ∣ 2 ≤ ∣ ξ 1 ∣ 2 + . . . + ∣ ξ n ∣ 2 + 2 ∣ χ ∣    ∣ ζ ∣ + ∣ η 1 ∣ 2 + . . . + ∣ η n ∣ 2 = ( ∣ ∣ χ ∣ ∣ + ∣ ∣ ζ ∣ ∣ ) 2 \quad|\xi_1|^2+...+|\xi_n|^2+2\sum_{i=1}^{n}\xi_i\bar{\eta_i}++|\eta_1|^2+...+|\eta_n|^2\\ \quad\\ =|\xi_1|^2+...+|\xi_n|^2+2(\boldsymbol\chi,\bar{\boldsymbol\zeta})+|\eta_1|^2+...+|\eta_n|^2\\ \quad\\ \leq|\xi_1|^2+...+|\xi_n|^2+2|\boldsymbol\chi|\;|\boldsymbol\zeta|+|\eta_1|^2+...+|\eta_n|^2\\\quad\\ =(||\boldsymbol\chi||+||\boldsymbol\zeta||)^2 ξ12+...+ξn2+2i=1nξiηiˉ++η12+...+ηn2=ξ12+...+ξn2+2(χ,ζˉ)+η12+...+ηn2ξ12+...+ξn2+2χζ+η12+...+ηn2=(χ+ζ)2

感觉正确的推导应该是这样
不知道课本上是咋推导的
自己没有想明白
如有错误 欢迎指正


∣ ∣ χ + ζ ∣ ∣ 2 ≤ ( ∣ ∣ χ ∣ ∣ + ∣ ∣ ζ ∣ ∣ ) 2 ||\boldsymbol\chi+\boldsymbol\zeta||^2\leq(||\boldsymbol\chi||+||\boldsymbol\zeta||)^2 χ+ζ2(χ+ζ)2

向量的几种范数

P − 范 数 P-范数 P

定义

( ∑ i = 1 n ∣ ξ i ∣ p ) 1 p 1 ≤ p < + ∞ (\sum_{i=1}^{n}|\xi_i|^p)^{\frac{1}{p}}\quad 1\leq p < + \infty (i=1nξip)p11p<+

P − 范 数 P-范数 P

P = 1 P=1 P=1时,得到 1 − 范 数 1-范数 1
P = 2 P=2 P=2时,得到 2 − 范 数 2-范数 2
P = ∞ P=\infty P=时,得到 ∞ − 范 数 \infty-范数

1 − 范 数 1-范数 1

定义

∣ ∣ χ ∣ ∣ 1 = ∑ i = 1 n ∣ ξ i ∣ {||\boldsymbol\chi||}_1=\sum_{i=1}^{n}|\xi_i| χ1=i=1nξi

1 − 范 数 1-范数 1

记忆:一个向量中所有元素模的和
比如: χ = ( 1 , − 2 , 3 ) \boldsymbol\chi=(1,-2,3) χ=(1,2,3)
则: ∣ ∣ χ ∣ ∣ 1 = ∑ i = 1 n ∣ ξ i ∣ = ∣ 1 ∣ + ∣ − 2 ∣ + ∣ 3 ∣ = 1 + 2 + 3 = 6 ||\boldsymbol\chi||_1=\sum_{i=1}^{n}|\xi_i|=|1|+|-2|+|3|=1+2+3=6 χ1=i=1nξi=1+2+3=1+2+3=6

2 − 范 数 2-范数 2

定义

∣ ∣ χ ∣ ∣ 2 = ( ∑ i = 1 n ∣ ξ i ∣ 2 ) 1 2 {||\boldsymbol\chi||}_2=(\sum_{i=1}^{n}|\xi_i|^2)^{\frac{1}{2}} χ2=(i=1nξi2)21

2 − 范 数 2-范数 2

记忆:一个向量中所有元素模的平方的和再开方
比如: χ = ( 1 , − 2 , 3 ) \boldsymbol\chi=(1,-2,3) χ=(1,2,3)
则: ∣ ∣ χ ∣ ∣ 2 = ∑ i = 1 n ∣ ξ i ∣ = ( ∣ 1 ∣ 2 + ∣ − 2 ∣ 2 + ∣ 3 ∣ 2 ) 1 2 = ( 1 + 4 + 9 ) 1 2 = 14 ||\boldsymbol\chi||_2=\sum_{i=1}^{n}|\xi_i|=(|1|^2+|-2|^2+|3|^2)^{\frac{1}{2}}=(1+4+9)^{\frac{1}{2}}=\sqrt{14} χ2=i=1nξi=(12+22+32)21=(1+4+9)21=14

∞ − 范 数 \infty-范数

定义

∣ ∣ χ ∣ ∣ ∞ = max ⁡ i ∣ ξ i ∣ {||\boldsymbol\chi||}_{\infty}=\max_{i}|\xi_i| χ=imaxξi

∞ − 范 数 \infty-范数

记忆:一个向量中模最大的那个元素
比如: χ = ( 1 , − 2 , 3 , − 4 , 5 , − 6 ) \boldsymbol\chi=(1,-2,3,-4,5,-6) χ=(1,2,3,4,5,6)
则: ∣ ∣ χ ∣ ∣ ∞ = max ⁡ i ∣ ξ i ∣ = ∣ − 6 ∣ = 6 ||\boldsymbol\chi||_{\infty}=\max_{i}|\xi_i|=|-6|=6 χ=maxiξi=6=6

4.1.2 n n n维线性空间 V V V上的向量范数等价性

定理4.1.1

∣ ∣ χ ∣ ∣ α {||\boldsymbol\chi||}_{\alpha} χα ∣ ∣ χ ∣ ∣ β {||\boldsymbol\chi||}_{\beta} χβ为有限维线性空间 V V V的任一两种向量范数

它们不限于 P − P- P范数,则总存在两个与向量无关的正常数 c 1 c_1 c1 c 2 c_2 c2,使得

c 1 ∣ ∣ χ ∣ ∣ β ≤ ∣ ∣ χ ∣ ∣ α ≤ c 2 ∣ ∣ χ ∣ ∣ β , ∀ χ ∈ V c_1{||\boldsymbol\chi||}_{\beta}\leq{||\boldsymbol\chi||}_{\alpha}\leq c_2{||\boldsymbol\chi||}_{\beta},\forall \boldsymbol\chi\in V c1χβχαc2χβ,χV

说明这两种范数是等价

推论

∣ ∣ χ ∣ ∣ α ||\boldsymbol\chi||_{\alpha} χα ∣ ∣ χ ∣ ∣ β ||\boldsymbol\chi||_{\beta} χβ都是 ∣ ∣ χ ∣ ∣ p ( p = 1 , 2 , ∞ ) ||\boldsymbol\chi||_{p}(p=1,2,\infty) χp(p=1,2,),则下面两个不等式成立

∣ ∣ χ ∣ ∣ ∞ ≤ ∣ ∣ χ ∣ ∣ 1 ≤ n ∣ ∣ χ ∣ ∣ ∞ (1) ||\boldsymbol\chi||_{\infty}\leq||\boldsymbol\chi||_{1}\leq n||\boldsymbol\chi||_{\infty}\tag{1} χχ1nχ(1)

∣ ∣ χ ∣ ∣ 1 ||\boldsymbol\chi||_{1} χ1求一个向量中所有元素的模的和,而 ∣ ∣ χ ∣ ∣ ∞ ||\boldsymbol\chi||_{\infty} χ是找一个向量中元素的最大模
所以 ∣ ∣ χ ∣ ∣ 1 ||\boldsymbol\chi||_{1} χ1一定是大于等于 ∣ ∣ χ ∣ ∣ ∞ ||\boldsymbol\chi||_{\infty} χ
小于等于 n n n ∣ ∣ χ ∣ ∣ ∞ ||\boldsymbol\chi||_{\infty} χ之和(边界条件:向量中每一个元素的模都一样,等式成立)

∣ ∣ χ ∣ ∣ ∞ ≤ ∣ ∣ χ ∣ ∣ 2 ≤ n ∣ ∣ χ ∣ ∣ ∞ (2) ||\boldsymbol\chi||_{\infty}\leq||\boldsymbol\chi||_{2}\leq \sqrt{n}||\boldsymbol\chi||_{\infty}\tag{2} χχ2n χ(2)

理解 ∣ ∣ χ ∣ ∣ 2 ||\boldsymbol\chi||_{2} χ2是一个向量中所有元素模的平方的和再开方

定理4.1.2

C n C^n Cn中的向量序列 χ ( k ) = ( ξ 1 ( k ) , ξ 2 ( k ) , . . . , ξ n ( k ) ) k = 1 , 2 , 3 , . . . \boldsymbol\chi^{(k)}=(\xi_1^{(k)},\xi_2^{(k)},...,\xi_n^{(k)})\quad k=1,2,3,... χ(k)=(ξ1(k),ξ2(k),...,ξn(k))k=1,2,3,...收敛到向量 χ = ( ξ 1 , ξ 2 , . . . , ξ n ) \boldsymbol\chi=(\xi_1,\xi_2,...,\xi_n) χ=(ξ1,ξ2,...,ξn)的充要条件是对任一种范数 ∣ ∣ ⋅ ∣ ∣ ||\cdot|| ,序列 ∣ ∣ χ ( k ) − χ ∣ ∣ ||\boldsymbol\chi^{(k)}-\boldsymbol\chi|| χ(k)χ收敛到零

结语

说明:

  • 参考于 课本《矩阵理论》
  • 配合书中概念讲解 结合了自己的一些理解及思考

文章仅作为学习笔记,记录从0到1的一个过程

希望对您有一点点帮助,如有错误欢迎小伙伴指正

在这里插入图片描述

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值