Python 使用skimage实现求两幅图像之间的PSNR值

这篇博客介绍了如何在Python中利用skimage库进行图像去噪效果的评估,通过计算峰值信噪比(PSNR)来比较原始图像与添加噪声后的图像质量。示例代码展示了读取图像、添加噪声以及计算PSNR值的过程,得到的PSNR值为6.18489302425162。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

课程作业中需要对去噪图像与原图像之间的对比进行说明

这里选择的是利用PSNR值进行比较

借用Python中skimage库实现

peak_signal_noise_ratio(img_original, img_with_noise)

Demo

from skimage import data, util,io
from skimage.metrics import peak_signal_noise_ratio

# 读取原图
img_original = io.imread("img/3.jpeg")

# 添加噪声
sigma = 0.1
img_with_noise = util.random_noise(img_original, var=sigma**2)

# 求psnr值
psnr = peak_signal_noise_ratio(img_original, img_with_noise)
psnr

# 6.18489302425162
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

海轰Pro

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值