python 使用selenium、pytesseract、pillow库实现简单的验证码识别,成功率大概75%,需要写个循环

这段代码演示了如何结合SeleniumWebdriver和PIL库的Image模块,以及OCR工具Pytesseract,来抓取并识别网页上的验证码。通过Chrome浏览器打开目标网址,找到验证码元素,截图保存,然后利用Pytesseract将图片转换为文本,最后将识别出的验证码输入到指定的输入框中。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from selenium import webdriver
from PIL import Image
import pytesseract


browser = webdriver.Chrome()
browser.get('输入目标网址')#把输入目标网址替换一下
ele_codepic = browser.find_element('xpath','把对应的xpath写进去')#元素定位,也可以使用别的定位方法
with open('codepic.png',mode='wb') as f:
    f.write(ele_codepic.screenshot_as_png)#保存图片
image = Image.open('codepic.png')
code = pytesseract.image_to_string(image)#读取图片
browser.find_element('xpath','把对应的xpath写进去').send_keys(code)#把验证码输进去,也可以使用别的定位方法

 这个代码可以实现简单的识别

### 使用 Selenium 实现自动识别验证码并完成登录操作 在探讨如何利用 Selenium 完成这一目标之前,值得注意的是,某些类型的验证码设计初衷就是为了防止自动化工具轻易绕过安全机制。对于图形验证、逻辑推理类验证码以及现代基于行为分析的动态验证码而言,单纯依靠 Selenium 可能难以达到理想效果。 然而,在特定条件下,可以尝试通过结合图像处理技术和机器学习模型来增强Selenium的功能以应对简单的滑动或点击型验证码挑战[^1]: #### 图像处理技术辅助验证码解析 - 对于静态图片形式的简单字符组合验证码,可借助Python中的Pillow读取页面上显示的验证码图片,并对其进行预处理(如灰度化、二值化),之后再调用Tesseract OCR引擎尝试转换为文本字符串供后续输入框填使用。 ```python from PIL import Image import pytesseract def get_captcha_text(image_path): image = Image.open(image_path) captcha_text = pytesseract.image_to_string(image, lang='eng') return captcha_text.strip() ``` #### 结合第三方API服务提高成功率 当遇到更复杂的视觉干扰项或者扭曲变形严重的验证码时,则推荐接入专业的在线OCR API接口,比如腾讯云AI平台提供的通用文字识别能力,能够有效提升识别精度和效率。 #### 动态交互式验证码解决方案 面对需要拖拽滑块才能解锁的情况,除了模仿真实用户的移动轨迹外,还可以考虑引入深度神经网络算法训练出一套专门用于预测最优路径规划方案的模型,进而指导浏览器端执行精准的操作指令序列。 尽管上述方法可以在一定程度上帮助解决部分场景下的验证码难题,但从长远来看,随着网络安全防护措施不断升级迭代,依赖此类手段存在诸多不确定性和风险因素。因此建议开发者们更多关注官方文档指南内的合规认证流程说明,遵循网站运营方设定的相关规则开展业务活动。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值