此题我用的深度搜索方法求解,而题解不管从时间复杂度还是空间复杂度上都要简单许多,还开启了新的运算符|&,故用博客记录此题。
题意分析
这题的最开始我用的是暴力求解法,遍历数组判断符合条件的点。这种做法错误原因在于,本题要求机器人能到达的点,那些不能到达点看作是障碍,机器人只能上下左右四个方向依次通过,不能越过障碍。
所以我后来选择了深度遍历的方法。
深度遍历解决
public class offer_12 {
boolean[][] visited;
public boolean exist(char[][] board, String word) {
//肯定要有一个visited[][]数组来存放有没有被访问过
//可以用深度优先的感jiao做
//深度优先有顺序
//界限:越界、未找到、不可重复访问
visited = new boolean[board.length][board[0].length];
for (int i = 0; i < board.length; i++){
for (int j = 0; j < board[0].length; j++){
visited[i][j] = false;
}
}
for (int i = 0; i < board.length; i++){
for (int j = 0; j < board[0].length; j++){
if (board[i][j] == word.charAt(0)){
visited[i][j] = true;
if(dfsexist(board, word, i, j, 1)){
return true;
}
}
}
}
return false;
}
public boolean dfsexist(char[][] board, String word, int width, int height, int count){
if (count > word.length()-1){
return true;
}
int[] pos_x = {-1, 0, 1, 0};
int[] pos_y = {0, 1, 0, -1};
for (int i = 0; i < 4; i++){
if (width + pos_x[i] < 0 || width + pos_x[i] >board.length - 1 || height + pos_y[i] < 0 || height + pos_y[i] > board[0].length - 1){
continue;
}
if(!visited[width + pos_x[i]][height + pos_y[i]]){
if (board[width + pos_x[i]][height + pos_y[i]] == word.charAt(count)){
visited[width + pos_x[i]][height + pos_y[i]] = true;
if(dfsexist(board, word, width + pos_x[i], height + pos_y[i], count+1)){
return true;
}
}
}
}
visited[width][height] = false;
return false;
}
}
leecode大佬解答
public class Solution {
public int movingCount(int m, int n, int k) {
if (k == 0) {
return 1;
}
boolean[][] vis = new boolean[m][n];
int ans = 1;
vis[0][0] = true;
for (int i = 0; i < m; ++i) {
for (int j = 0; j < n; ++j) {
if ((i == 0 && j == 0) || get(i) + get(j) > k) {
continue;
}
// 边界判断
if (i - 1 >= 0) {
vis[i][j] |= vis[i - 1][j];
}
if (j - 1 >= 0) {
vis[i][j] |= vis[i][j - 1];
}
ans += vis[i][j] ? 1 : 0;
}
}
return ans;
}
private int get(int x) {
int res = 0;
while (x != 0) {
res += x % 10;
x /= 10;
}
return res;
}
}
其中:
关于 |= 运算符:|= 运算符和 += 这一类的运算符一样,拆解开就是 a = a | b;| 的运算是二进制运算,为或运算 ,即0和0做|为0,1和任意(0/1)做|为1。
代码的关键在于:不用深度遍历找可达点,抓住如果这个点可达,那么横向前一个或纵向前一个一定可达。通过这样判断是否可达能大大降低时间复杂