飞浆AIstudio 数据准备和特征工程 网页上的数据

爬取“豆瓣电影” → 即将上映电影

网页概况

在这里插入图片描述

代码编写
import requests
from bs4 import BeautifulSoup
import pandas as pd

headers = {
    "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/102.0.0.0 Safari/537.36"
}
response = requests.get("https://movie.douban.com/coming",headers=headers)
soup = BeautifulSoup(response.text,'lxml')

# print(soup)
data = []
table = soup.find("table",{"class":"coming_list"})
# print(table)
table_body = table.find("tbody")
rows = table_body.find_all("tr")
# print(rows)
for row in rows:
    id_value = row.find("a")["href"][-9:-1].replace("/","")
    cols = row.find_all("td")
    cols = [ele.text.strip() for ele in cols]
    cols.append(id_value)
    data.append(cols)
# print(data)

df = pd.DataFrame(data)
df.columns = ["上映日期","片名","类型","制片国家/地区","想看","ID"]
# print(df.head())

url_fore = "https://movie.douban.com/subject/"
# 电影详情
def movie(id_value):
    response = requests.get(url_fore + id_value,headers=headers)
    soup = BeautifulSoup(response.text,'lxml')
    movie_infos = soup.find("div",{"id":"info"})
    directors = movie_infos.find_all(rel = "v:directedBy")
    dlst = [d.text for d in directors if d]
    actors = movie_infos.find_all(rel = "v:starring")
    alst = [actor.text for actor in actors if actor]
    director_str = "|".join(dlst)
    print(director_str)
    actor_str = "|".join(alst)
    print(actor_str)
    return [director_str,actor_str,id_value]

movie_list = []
for i in df["ID"]:
    infos = movie(i)
    movie_list.append(infos)

# print(movie_list)

movie_df = pd.DataFrame(movie_list,columns=["导演","主演","ID"])
movie_df.to_csv("movie.csv",encoding="utf_8_sig")

运行结果

在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值