查找算法【平衡二叉树】 - 平衡二叉树的删除

查找算法【平衡二叉树】 - 平衡二叉树的删除

在平衡二叉树中进行插入操作时只需从插入节点之父向上检查,发现不平衡便立即调整,调整一次平衡即可;而进行删除操作时需要一直从删除节点之父向上检查,发现不平衡便立即调整,然后继续向上检查,直到树根。

【算法步骤】

① 在平衡二叉树中查找x ,如果查找失败,则返回;如果查找成功,则执行删除操作(同二叉查找树的删除操作)。

② 从实际被删除节点之父g 出发(当被删除节点有左右子树时,令其直接前驱(或直接后继)代替其位置,删除其直接前驱,实际被删除节点为其直接前驱(或直接后继)),向上寻找最近的不平衡节点。逐层检查各代祖先节点,如果平衡,则更新其高度,继续向上寻找;如果不平衡,则判断失衡类型(沿着高度大的子树判断),并做相应的调整。

③ 继续向上检查,一直到树根。

【举个栗子】

例如,一棵二叉平衡树如下图所示,删除16。

在这里插入图片描述

① 16为叶子,将其直接删除即可,如下图所示。

在这里插入图片描述

② 指针g 指向实际被删除节点16之父25,检查是否失衡,25节点失衡,用g 、u 、v 记录失衡三代节点(从失衡节点沿着高度大的子树向下找三代),判断为RL型,进行RL旋转调整平衡,如下图所示。

在这里插入图片描述

③ 继续向上检查,指针g 指向g 的双亲69,检查是否失衡,69节点失衡,用g 、u 、v 记录失衡三代节点,判断为RR型,进行RR旋转调整平衡,如下图所示。

在这里插入图片描述

④ 已检查到根,结束。

【再一个栗子】

一棵平衡二叉树如下图所示,删除80。

在这里插入图片描述

① 80的左右子树均非空,令其直接前驱78代替它,删除其直接前驱78,如下图所示。

在这里插入图片描述

② 指针g 指向实际被删除节点78之父75,检查是否失衡,75节点失衡,用g 、u 、v 记录失衡三代节点,判断为LL型,进行LL旋转调整平衡,如下图所示。

在这里插入图片描述

③ 指针g 指向g 的双亲80,检查是否失衡,一直检查到根,结束。

注意: 从实际被删除节点之父开始检查是否失衡,一直检查到根。

【算法实现】

AVLTree adjust(AVLTree &T){ //删除节点后,需要判断是否仍平衡,如果不平衡,则需要调整
	if(T == NULL){
		return NULL;
	}
	if(Height(T->lchild) - Height(T->rchild) == 2){ //沿着高度大的那条路径判断
		if(Height(T->lchild->lchild) >= Height(T->lchild->rchild)){
			T = LL_Rotation(T);
		}
		else{
			T = LR_Rotation(T);
		}
	}
	if(Height(T->rchild) - Height(T->lchild) == 2){ //沿着高度大的那条路径判断
		if(Height(T->rchild->rchild) >= Height(T->rchild->lchild)){
			T = RR_Rotation(T)}
		else{
			T = RL_Rotation(T);
		}
	}
	updateHeight(T);
	return T;
}

AVLTree Delete(AVLTree &T , int x){
	if(T == NULL){
		return NULL;
	}
	if(T->data == x){ //如果找到待删除节点
		if(T->rchild == NULL){ //如果该节点的右孩子为NULL,那么直接将其删除
			AVLTree temp = T;
			T = T->lchild;
			delete temp;		
		}
		else{ //否则,将其右子树的最左孩子作为这个节点,并且递归删除这个节点的值
			AVLTree temp;
			temp = T->rchild;
			while(temp->lchild){
				temp = temp->lchild;
			}		
			T->data = temp->data;
			T->rchild = Delete(T->rchild , T->data);
			updateHeight(T);
		}
		return T;
	}
	if(T->data > x){ //调整删除节点后可能涉及的节点
		T->lchild = Delete(T->lchild , x);
	}
	if(T->data < x){
		T->rchild = Delete(T->rchild , x);
	}
	updateHeight(T);
	T = adjust(T);
	return T;
}	
  • 3
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
#include <iostream> #include<stack> #include<queue> using namespace std; const int LH=1; //左子树比右子树高1 const int EH=0; //左右子树一样高 const int RH=-1;//右子树比左子树高1 const int MAX_NODE_NUM=20; //结点数目上限 class AvlNode { int data; int bf; //平衡因子 AvlNode *lchild; AvlNode *rchild; friend class AVL_Tree; }; class AVL_Tree { public: int Get_data(AvlNode *p) { return p->data; } void Create_AVl(AvlNode *&T) //建树 { cout<<"输入平衡二叉树的元素,输入-1代表结束输入:"; int num[MAX_NODE_NUM]; int a,i=0; while(cin>>a && a!=-1) { num[i]=a; i++; } if(num[0]==-1) { cout<<"平衡树为空"<<endl; T=NULL; return; } int k=i; bool taller=false; for(i=0;i<k;i++) Insert_Avl(T,num[i],taller);//逐个进行插入,插入过程看下面的示意图 cout<<"_____建树完成____"<<endl; } void L_Rotate(AvlNode *&p) { //以p为根节点的二叉排序树进行单向左旋处理 AvlNode *rc=p->rchild; p->rchild=rc->lchild; rc->lchild=p; p=rc; } void R_Rotate(AvlNode *&p) { //以p为根节点的二叉排序树进行单向右旋处理 AvlNode *lc=p->lchild; p->lchild=lc->rchild; lc->rchild=p; p=lc; } void Left_Balance(AvlNode *&T) { //以T为根节点的二叉排序树进行左平衡旋转处理 AvlNode *lc,*rd; lc=T->lchild; switch(lc->bf) { case LH: //新结点插在T的左孩子的左子树上,做单向右旋处理 T->bf=lc->bf=EH; R_Rotate(T); break; case RH: //新结点插在T的左孩子的右子树上,要进行双旋平衡处理(先左后右) rd=lc->rchild; switch(rd->bf) { case LH: //插在右子树的左孩子上 T->bf=RH; lc->bf=EH; break; case EH: T->bf=lc->bf=EH; break; case RH: T->bf=EH; lc->bf=LH; break; } rd->bf=EH; L_Rotate(T->lchild);//先对T的左子树进行单向左旋处理 R_Rotate(T); //再对T进行单向右旋处理 } } void Right_Balance(AvlNode *&T) { //以T为根节点的二叉排序树进行右平衡旋转处理 AvlNode *rc,*ld; rc=T->rchild; switch(rc->bf) { case RH: //新结点插在右孩子的右子树上,进行单向左旋处理 T->bf=rc->bf=EH; L_Rotate(T); break; case LH: //新结点插在T的右孩子的左子树上,要进行右平衡旋转处理(先右再左) ld=rc->lchild; switch(ld->bf) { case LH: T->bf=LH; rc->bf=EH; break; case EH: T->bf=rc->bf=EH; break; case RH: T->bf=EH; rc->bf=RH; break; } ld->bf=EH; R_Rotate(T->rchild);//先对T的右子树进行单向右旋处理 L_Rotate(T); //再对T进行单向左旋处理 } } bool Insert_Avl(AvlNode *&T,int num,bool &taller) //插入 { //若在平衡二叉树中不存在结点值和num一样大小的结点 //则插入值为num的新结点,并返回true //若因为插入而使得二叉排序树失去平衡,则做平衡旋转处理 //taller反映树是否长高 if(!T) { //插入新结点,树长高,taller为true T=new AvlNode; T->data=num; T->lchild=T->rchild=NULL; T->bf=EH; taller=true; } else { if(num==T->data) { //不重复插入 taller=false; return false; } if(num<T->data) //继续在T的左子树中进行搜索 { if(!Insert_Avl(T->lchild,num,taller))//插入不成功 return false; if(taller) //已插入T的左子树,且左子树长高 { switch(T->bf) { case LH: /*————————————————————— / 插入前左子树高于右子树,需要进行做平衡处理 / 不管是单向左旋处理,还是先左后右平衡处理 / 处理结果都是使得插入新结点后,树的高度不变 /—————————————————————*/ Left_Balance(T); taller=false; break; case EH: //插入前左右子树等高,现在插入新街点后,左子树比右子树高 T->bf=LH; taller=true; break; case RH: //插入前右子树比左子树高,现在新结点插入左子树后,树变为左右子树等高 T->bf=EH; taller=false; break; } } } else { //num>T->data 在T的右子树中继续搜索 if(!Insert_Avl(T->rchild,num,taller)) return false; if(taller) { switch(T->bf) { case LH: //插入前左子树比右子树高,现在插入T的右子树后,左右子树等高 T->bf=EH; taller=false; break; case EH: //插入前左右子树等高,现在插入后,右子树比左子树高 T->bf=RH; taller=true; break; case RH: //插入前右子树比坐子树高,插入后,排序树失去平衡,需要进行右平衡处理 Right_Balance(T); taller=false; break; } } } } return true; } bool Search_Avl(AvlNode *T,int num,AvlNode *&f,AvlNode *&p) //搜索 { //用p带回查找到的顶点的地址,f带回p的双亲结点 p=T; while(p) { if(p->data==num) return true; if(p->data>num) { f=p; p=p->lchild; } else { f=p; p=p->rchild; } } return false; } void Delete_AVL(AvlNode *&T,int num) //删除删除后没有回溯到根节点,算法有错,待日后修改完善,有心的朋友可以自己加一个栈或者其他方式来实现 { /*--------------------------------------------------------- / 从树中删除一个节点后,要保证删后的树还是一棵平衡二叉树, / 删除前,首先是在树中查找是否有这个结点,用p指向该结点, / 用f指向p的双亲结点,这个结点在树中的位置有下面四种情况: / / 1:如果p指向的结点是叶子结点,那么直接将f指针的左子树或者 / 右子树置空,然后删除p结点即可。 / / 2:如果p指向的结点是只有左子树或右子树,那么只需要让p结点 / 原来在f中的位置(左子树或右子树)用p的子树代替即可。 / 代替后,要修改f的平衡因子,在失去平衡的时候,要调用相应的 / 做平衡旋转或右平衡旋转进行恢复. / / 3:如果p所指向的结点是根节点,那么直接将根节点置空 / / 4:如果p所指向的结点左右子树都非空,为了删除p后原序列的顺 / 序不变,就需要在原序列中先找出p的直接前驱(或者直接后继) / 结点用那个结点的值来代替p结点的值,然后再删掉那个直接前 / 驱(或者直接后继)结点。 / 其中s指向的是要删除的结点,也就是p的直接前驱,q指向的是 / s的双亲结点,此时,应该看s的平衡因子,在会出现失去平衡的 / 情况时,就要根据实际情况采用左平衡旋转或是右平衡旋转,让 / 树恢复平衡,这点和插入操作时是相对应的。 / / 在中序遍历序列中找结点的直接前驱的方法是顺着结点的左孩子 / 的右链域开始,一直到结点右孩子为空为止。 /---------------------------------------------------------*/ AvlNode *f=NULL; AvlNode *p=NULL; AvlNode *q=NULL; AvlNode *s=NULL; if(Search_Avl(T,num,f,p)) { if(p->lchild && p->rchild) //左右子树均存在时 { q=p; s=p->lchild; while(s->rchild) { q=s; s=s->rchild; } p->data=s->data; if(q!=p) { //q结点的右子树高度减少1 //所以平衡因子会+1 q->rchild=s->lchild; switch(q->bf) { //删除前右子树高,现在就变成一样高 case RH: q->bf=EH; break; //删除前等高,现在就变成左子树比右子树高 case EH: q->bf=LH; break; //删除前左子树高,现在左子树又高了一,所以失去平衡 case LH: q->bf=EH; Left_Balance(q); break; } } else { //p的左子树的右子树为空时 //q结点也就是p结点,由于s的右子树为空 //所以q结点的左子树高度降低1 //平衡因子-1 q->lchild=s->lchild; switch(q->bf) { case LH: q->bf=EH;break; case EH: q->bf=RH;break; case RH: q->bf=EH; Right_Balance(q); break; } } delete s; cout<<"删除结点成功"<<endl; return ; } else { if(!p->lchild) { q=p; p=p->rchild; } else { q=p; p=p->lchild; } if(!T) { T->bf=EH; T=p; } else if(q==f->lchild) { f->lchild=p; switch(f->bf) { case LH: f->bf=EH; break; case EH: f->bf=RH; break; case RH: f->bf=EH; Right_Balance(f); break; } } else { f->rchild=p; switch(f->bf) { case RH: f->bf=EH; break; case EH: f->bf=LH; break; case LH: f->bf=EH; Left_Balance(f); break; } } delete q; cout<<"删除结点成功"<<endl; return; } } else { cout<<"要删除的结点不存在"<<endl; return; } } InOrder_Traverse(AvlNode *T) //中序遍历 { stack<AvlNode *> s; AvlNode *p=T; while(p || !s.empty()) { if(p) { s.push(p); p=p->lchild; } else { p=s.top(); s.pop(); cout<<p->data<<" "; p=p->rchild; } } } void Level_Traverse(AvlNode *T) //层次遍历 { queue<AvlNode *> q; AvlNode *p=T; q.push(p); while(!q.empty()) { p=q.front(); q.pop(); cout<<p->data<<" "; if(p->lchild) q.push(p->lchild); if(p->rchild) q.push(p->rchild); } } }; //测试文件"main.cpp" //#include"tree.h" int main() { AVL_Tree tree; AvlNode *root=NULL; cout<<"____建立平衡二叉树____"<<endl; tree.Create_AVl(root); cout<<"中序遍历二叉树为:"; tree.InOrder_Traverse(root); cout<<endl; cout<<"层次遍历二叉树为:"; tree.Level_Traverse(root); cout<<endl; int num; bool taller=false; cout<<"输入你要插入的结点的值:"; cin>>num; tree.Insert_Avl(root,num,taller); cout<<"中序遍历二叉树为:"; tree.InOrder_Traverse(root); cout<<endl; AvlNode *f=NULL; AvlNode *p=NULL; cout<<"输入你要搜索的结点的值:"; cin>>num; if(tree.Search_Avl(root,num,f,p)) { cout<<"查找得到的结点值为:"<<tree.Get_data(p)<<"的地址为:"<<p<<endl; if(f==NULL) cout<<"因为结点"<<tree.Get_data(p)<<"是根结点,所以没有双亲结点"<<endl; else cout<<"该结点的双亲结点的值为:"<<tree.Get_data(f)<<endl; } else cout<<"查找的结点不存在"<<endl; cout<<"输入你要删除的结点的值:"; cin>>num; tree.Delete_AVL(root,num); cout<<"中序遍历二叉树为:"; tree.InOrder_Traverse(root); cout<<endl; return 0; }
### 回答1: 算法9-9~9-12是关于平衡二叉树的基本操作,包括插入、删除、旋转等操作。平衡二叉树是一种特殊的二叉搜索树,它的左右子树高度差不超过1,可以保证树的高度始终在log(n)级别,从而保证了树的查找、插入、删除等操作的时间复杂度都是O(log(n))。 具体来说,算法9-9是平衡二叉树的插入操作,它首先按照二叉搜索树的规则找到要插入的位置,然后通过旋转操作来保持平衡。算法9-10是平衡二叉树删除操作,它也是通过旋转操作来保持平衡。算法9-11和9-12是平衡二叉树的旋转操作,包括左旋、右旋、左右旋和右左旋,这些操作可以使树重新达到平衡状态。 总之,平衡二叉树的基本操作是非常重要的,它们可以保证树的高度始终在log(n)级别,从而保证了树的查找、插入、删除等操作的时间复杂度都是O(log(n)),是一种非常高效的数据结构。 ### 回答2: 平衡二叉树是一种基于二叉查找树的数据结构,其在插入和删除节点时会自动调整,以保持树的平衡性。平衡二叉树的常见有AVL树、红黑树等。本文主要介绍平衡二叉树的基本操作,包括插入、删除查找。 9-9 插入操作 在平衡二叉树中插入一个节点的过程和在二叉查找树中插入节点的过程类似。不同的是,在插入结束后,需要检查当前节点是否失去平衡并做出相应的调整。 在插入节点时,需要记录节点的高度(从叶节点到根节点的距离)。如果当前节点为空,则将新节点插入到该节点处并将高度设置为1;否则,比较新节点的值和当前节点的值,如果新节点的值小于当前节点的值,则将新节点插入到当前节点的左子树中并更新该节点的高度;如果新节点的值大于当前节点的值,则将新节点插入到当前节点的右子树中并更新该节点的高度。 插入结束后,需要检查当前节点是否失去平衡。我们可以用该节点的左子树高度和右子树高度之差来衡量它是否平衡。如果该节点的平衡因子大于1,则需要进行旋转操作,以恢复平衡。 9-10 删除操作 在平衡二叉树删除一个节点需要分为以下三种情况: 1. 被删除的节点为叶子节点,直接删除即可。 2. 被删除的节点有一个子节点,将该子节点代替被删除的节点即可。 3. 被删除的节点有两个子节点,需要找到它的中序遍历下一个节点(即比它大的最小节点)代替被删除的节点。如果该节点有右子树,则中序遍历下一个节点为右子树中最小的节点;如果该节点没有右子树,则中序遍历下一个节点为它的某个祖先节点。 删除结束后,需要检查当前节点是否失去平衡。如果失去平衡,则需要进行旋转操作,以恢复平衡。 9-11 查找操作 在平衡二叉树查找一个节点的过程和在二叉查找树中查找节点的过程类似。需要从根节点开始,比较查找的值和当前节点的值。如果查找的值小于当前节点的值,则在左子树中递归查找;如果查找的值大于当前节点的值,则在右子树中递归查找;如果查找的值等于当前节点的值,则返回该节点。 9-12 平衡因子 平衡二叉树的平衡因子定义为当前节点的左子树高度和右子树高度之差。如果平衡因子的绝对值大于1,则说明该节点失去了平衡。在平衡二叉树中,每个节点的平衡因子只能为-1、0或1。如果不是这三个值,则需要进行旋转操作以恢复平衡。 ### 回答3: 平衡二叉树是一种特殊的二叉搜索树,它的左右子树高度差不超过1。由于平衡二叉树对于插入、删除查找等操作的时间复杂度都是O(logn),因此在许多应用场景中得到了广泛的应用。平衡二叉树的基本操作包括插入、删除查找等,以下分别介绍: 9-9 插入操作:平衡二叉树的插入操作与普通二叉搜索树相同,只是插入后需要进行平衡处理,避免出现左右子树高度差不平衡的情况。例如插入节点x,需要先查找其应当插入的位置,然后通过旋转操作将其父节点与祖父节点一起旋转,使得树重新平衡。插入操作的时间复杂度为O(logn)。 9-10 删除操作:删除操作也类似于普通二叉搜索树,需要删除节点x后通过旋转操作迭代处理其祖先节点的平衡性,保证整个树的平衡性。删除操作的时间复杂度为O(logn)。 9-11 查找操作:查找操作与普通二叉搜索树相同,只是由于平衡二叉树的高度比较平衡,因此可以保证其查找效率较高。查找操作的时间复杂度为O(logn)。 9-12 平衡操作:平衡二叉树的平衡操作主要包括旋转操作和重构操作。旋转操作通过将子树旋转到左右子树高度相等来实现平衡,分为左旋和右旋两种。重构操作通过重新构建平衡二叉树的结构来保证整个树的平衡性。平衡操作的时间复杂度为O(1)。 综上所述,平衡二叉树是一种高效的数据结构,其插入、删除查找等基本操作时间复杂度都为O(logn),通过平衡操作可以保证整个树的平衡性。在实际应用中,平衡二叉树被广泛应用于数据库、搜索引擎、红黑树等场景中,具有重要的实用价值。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值