习题2-2
1. 推导余切函数及余割函数的导数公式:
( cot x ) ′ = − csc 2 x , ( csc x ) ′ = − csc x cot x (\cot x)^{\prime}=-\csc ^2 x, \quad(\csc x)^{\prime}=-\csc x \cot x (cotx)′=−csc2x,(cscx)′=−cscxcotx
2. 求下列函数的导数:
(1) y = x 3 + 7 x 4 − 2 x + 12 y=x^3+\frac{7}{x^4}-\frac{2}{x}+12 y=x3+x47−x2+12;
(2) y = 5 x 3 − 2 x + 3 e x y=5 x^3-2^x+3 \mathrm{e}^x y=5x3−2x+3ex;
(3) y = 2 tan x + sec x − 1 y=2 \tan x+\sec x-1 y=2tanx+secx−1;
(4) y = sin x ⋅ cos x y=\sin x \cdot \cos x y=sinx⋅cosx;
(5) y = x 2 ln x y=x^2 \ln x y=x2lnx;
(6) y = 3 e x cos x y=3 \mathrm{e}^x \cos x y=3excosx;
(7) y = ln x x y=\frac{\ln x}{x} y=xlnx;
(8) y = e x x 2 + ln 3 y=\frac{\mathrm{e}^x}{x^2}+\ln 3 y=x2ex+ln3;
(9) y = x 2 ln x cos x y=x^2 \ln x \cos x y=x2lnxcosx;
(10) s = 1 + sin t 1 + cos t s=\frac{1+\sin t}{1+\cos t} s=1+cost1+sint .
3. 求下列函数在给定点处的导数:
(1) y = sin x − cos x y=\sin x-\cos x y=sinx−cosx, 求 y ′ ∣ x = π 6 \left.y^{\prime}\right|_{x=\frac{\pi}{6}} y′∣x=6π 和 y ′ ∣ x = π 4 \left.y^{\prime}\right|_{x=\frac{\pi}{4}} y′∣x=4π;
(2) ρ = θ sin θ + 1 2 cos θ \rho=\theta \sin \theta+\frac{1}{2} \cos \theta ρ=θsinθ+21cosθ, 求 d ρ d θ ∣ θ = π 4 \left.\frac{\mathrm{d} \rho}{\mathrm{d} \theta}\right|_{\theta=\frac{\pi}{4}} dθdρ∣∣∣θ=4π;
(3) f ( x ) = 3 5 − x + x 2 5 f(x)=\frac{3}{5-x}+\frac{x^2}{5} f(x)=5−x3+5x2, 求 f ′ ( 0 ) f^{\prime}(0) f′(0) 和 f ′ ( 2 ) f^{\prime}(2) f′(2).
4. 以初速度 v 0 v_0 v0 坚直上抛的物体, 其上升高度 s s s 与时间 t t t 的关系是 s = v 0 t − 1 2 g t 2 s=v_0 t-\frac{1}{2} g t^2 s=v0t−21gt2. 求 :
(1) 该物体的速度 v ( t ) v(t) v(t);
(2) 该物体达到最高点的时刻.
5. 求曲线 y = 2 sin x + x 2 y=2 \sin x+x^2 y=2sinx+x2 上横坐标为 x = 0 x=0 x=0 的点处的切线方程和法线方程.
6. 求下列函数的导数:
(1) y = ( 2 x + 5 ) 4 y=(2 x+5)^4 y=(2x+5)4;
(2) y = cos ( 4 − 3 x ) y=\cos (4-3 x) y=cos(4−3x);
(3) y = e − 3 x 2 y=\mathrm{e}^{-3 x^2} y=e−3x2;
(4) y = ln ( 1 + x 2 ) y=\ln \left(1+x^2\right) y=ln(1+x2);
(5) y = sin 2 x y=\sin ^2 x y=sin2x;
(6) y = a 2 − x 2 y=\sqrt{a^2-x^2} y=a2−x2;
(7) y = tan x 2 y=\tan x^2 y=tanx2;
(8) y = arctan ( e x ) y=\arctan \left(\mathrm{e}^x\right) y=arctan(ex);
(9) y = ( arcsin x ) 2 y=(\arcsin x)^2 y=(arcsinx)2;
(10) y = ln cos x y=\ln \cos x y=lncosx.
7. 求下列函数的导数:
(1)
y
=
arcsin
(
1
−
2
x
)
y=\arcsin (1-2 x)
y=arcsin(1−2x);
(2)
y
=
1
1
−
x
2
y=\frac{1}{\sqrt{1-x^2}}
y=1−x21;
(3) y = e − x 2 cos 3 x y=\mathrm{e}^{-\frac{x}{2}} \cos 3 x y=e−2xcos3x;
(4) y = arccos 1 x y=\arccos \frac{1}{x} y=arccosx1;
(5) y = 1 − ln x 1 + ln x y=\frac{1-\ln x}{1+\ln x} y=1+lnx1−lnx;
(6) y = sin 2 x x y=\frac{\sin 2 x}{x} y=xsin2x;
(7) y = arcsin x y=\arcsin \sqrt{x} y=arcsinx;
(8) y = ln ( x + a 2 + x 2 ) y=\ln \left(x+\sqrt{a^2+x^2}\right) y=ln(x+a2+x2);
(9) y = ln ( sec x + tan x ) y=\ln (\sec x+\tan x) y=ln(secx+tanx);
(10) y = ln ( csc x − cot x ) y=\ln (\csc x-\cot x) y=ln(cscx−cotx).
8. 求下列函数的导数:
(1) y = ( arcsin x 2 ) 2 y=\left(\arcsin \frac{x}{2}\right)^2 y=(arcsin2x)2;
(2) y = ln tan x 2 y=\ln \tan \frac{x}{2} y=lntan2x;
(3) y = 1 + ln 2 x y=\sqrt{1+\ln ^2 x} y=1+ln2x;
(4) y = e arctan x y=\mathrm{e}^{\arctan \sqrt{x}} y=earctanx;
(5) y = sin n x cos n x y=\sin ^n x \cos n x y=sinnxcosnx;
(6) y = arctan x + 1 x − 1 y=\arctan \frac{x+1}{x-1} y=arctanx−1x+1;
(7) y = arcsin x arccos x y=\frac{\arcsin x}{\arccos x} y=arccosxarcsinx;
(8) y = ln ln ln x y=\ln \ln \ln x y=lnlnlnx;
(9) y = 1 + x − 1 − x 1 + x + 1 − x y=\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} y=1+x+1−x1+x−1−x;
(10) y = arcsin 1 − x 1 + x y=\arcsin \sqrt{\frac{1-x}{1+x}} y=arcsin1+x1−x.
9. 设函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 可导, 且 f 2 ( x ) + g 2 ( x ) ≠ 0 f^2(x)+g^2(x) \neq 0 f2(x)+g2(x)=0, 试求函数 y = f 2 ( x ) + g 2 ( x ) y=\sqrt{f^2(x)+g^2(x)} y=f2(x)+g2(x) 的导数.
10. 设 f ( x ) f(x) f(x) 可导,求下列函数的导数 d y d x \frac{\mathrm{d} y}{\mathrm{~d} x} dxdy :
(1) y = f ( x 2 ) y=f\left(x^2\right) y=f(x2);
(2) y = f ( sin 2 x ) + f ( cos 2 x ) y=f\left(\sin ^2 x\right)+f\left(\cos ^2 x\right) y=f(sin2x)+f(cos2x).
11. 求下列函数的导数:
(1) y = e − x ( x 2 − 2 x + 3 ) y=\mathrm{e}^{-x}\left(x^2-2 x+3\right) y=e−x(x2−2x+3);
(2) y = sin 2 x ⋅ sin ( x 2 ) y=\sin ^2 x \cdot \sin \left(x^2\right) y=sin2x⋅sin(x2);
(3) y = ( arctan x 2 ) 2 y=\left(\arctan \frac{x}{2}\right)^2 y=(arctan2x)2;
(4) y = ln x x n y=\frac{\ln x}{x^n} y=xnlnx;
(5) y = e t − e − t e t + e − t y=\frac{\mathrm{e}^t-\mathrm{e}^{-t}}{\mathrm{e}^t+\mathrm{e}^{-t}} y=et+e−tet−e−t;
(6) y = ln cos 1 x y=\ln \cos \frac{1}{x} y=lncosx1;
(7) y = e − sin 2 1 x y=\mathrm{e}^{-\sin ^2 \frac{1}{x}} y=e−sin2x1;
(8) y = x + x y=\sqrt{x+\sqrt{x}} y=x+x;
(9) y = x arcsin x 2 + 4 − x 2 y=x \arcsin \frac{x}{2}+\sqrt{4-x^2} y=xarcsin2x+4−x2;
(10) y = arcsin 2 t 1 + t 2 y=\arcsin \frac{2 t}{1+t^2} y=arcsin1+t22t
12. 求下列函数的导数:
(1) y = ch ( sh x ) y=\operatorname{ch}(\operatorname{sh} x) y=ch(shx);
(2) y = sh x ⋅ e c h x y=\operatorname{sh} x \cdot \mathrm{e}^{\mathrm{ch} x} y=shx⋅echx;
(3) y = th ( ln x ) y=\operatorname{th}(\ln x) y=th(lnx);
(4) y = sh 3 x + ch 2 x y=\operatorname{sh}^3 x+\operatorname{ch}^2 x y=sh3x+ch2x;
(5) y = th ( 1 − x 2 ) y=\operatorname{th}\left(1-x^2\right) y=th(1−x2);
(6) y = arsh ( x 2 + 1 ) y=\operatorname{arsh}\left(x^2+1\right) y=arsh(x2+1);
(7) y = arch ( e 2 x ) y=\operatorname{arch}\left(\mathrm{e}^{2 x}\right) y=arch(e2x);
(8) y = arctan ( th x ) y=\arctan (\operatorname{th} x) y=arctan(thx);
(9) y = ln ch x + 1 2 ch 2 x y=\ln \operatorname{ch} x+\frac{1}{2 \operatorname{ch}^2 x} y=lnchx+2ch2x1;
(10) y = ch 2 ( x − 1 x + 1 ) y=\operatorname{ch}^2\left(\frac{x-1}{x+1}\right) y=ch2(x+1x−1).
13. 设函数 f ( x ) f(x) f(x) 和 g ( x ) g(x) g(x) 均在点 x 0 x_0 x0 的某一邻域内有定义, f ( x ) f(x) f(x) 在 x 0 x_0 x0 处可导, f ( x 0 ) = 0 , g ( x ) f\left(x_0\right)=0, g(x) f(x0)=0,g(x) 在 x 0 x_0 x0 处连续,试讨论 f ( x ) g ( x ) f(x) g(x) f(x)g(x) 在 x 0 x_0 x0 处的可导性.
14. 设函数 f ( x ) f(x) f(x) 满足下列条件:
(1) f ( x + y ) = f ( x ) ⋅ f ( y ) f(x+y)=f(x) \cdot f(y) f(x+y)=f(x)⋅f(y), 对一切 x , y ∈ R x, y \in \mathbf{R} x,y∈R;
(2) f ( x ) = 1 + x g ( x ) f(x)=1+x g(x) f(x)=1+xg(x), 而 lim x → 0 g ( x ) = 1 \lim _{x \rightarrow 0} g(x)=1 limx→0g(x)=1.
试证明 f ( x ) f(x) f(x) 在 R \mathbf{R} R 上处处可导, 且 f ′ ( x ) = f ( x ) f^{\prime}(x)=f(x) f′(x)=f(x).