【课后习题】高等数学第七版上第二章 导数与微分 第二节 函数的求导法则

这篇文章包含一系列多元函数的导数计算问题,涉及正切、余切、余割函数的导数公式,以及多项式、指数、三角函数、对数函数等复合函数的求导。同时,文章还提出了在特定点求导数的问题,以及实际应用中的物理问题,如垂直上抛物体的高度与时间的关系。此外,还有一些特殊的函数,如反三角函数、双曲函数及其组合的导数计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

习题2-2

1. 推导余切函数及余割函数的导数公式:

( cot ⁡ x ) ′ = − csc ⁡ 2 x , ( csc ⁡ x ) ′ = − csc ⁡ x cot ⁡ x (\cot x)^{\prime}=-\csc ^2 x, \quad(\csc x)^{\prime}=-\csc x \cot x (cotx)=csc2x,(cscx)=cscxcotx

在这里插入图片描述

2. 求下列函数的导数:

(1) y = x 3 + 7 x 4 − 2 x + 12 y=x^3+\frac{7}{x^4}-\frac{2}{x}+12 y=x3+x47x2+12;

(2) y = 5 x 3 − 2 x + 3 e x y=5 x^3-2^x+3 \mathrm{e}^x y=5x32x+3ex;

(3) y = 2 tan ⁡ x + sec ⁡ x − 1 y=2 \tan x+\sec x-1 y=2tanx+secx1;

(4) y = sin ⁡ x ⋅ cos ⁡ x y=\sin x \cdot \cos x y=sinxcosx;

(5) y = x 2 ln ⁡ x y=x^2 \ln x y=x2lnx;

(6) y = 3 e x cos ⁡ x y=3 \mathrm{e}^x \cos x y=3excosx;

在这里插入图片描述

(7) y = ln ⁡ x x y=\frac{\ln x}{x} y=xlnx;

(8) y = e x x 2 + ln ⁡ 3 y=\frac{\mathrm{e}^x}{x^2}+\ln 3 y=x2ex+ln3;

(9) y = x 2 ln ⁡ x cos ⁡ x y=x^2 \ln x \cos x y=x2lnxcosx;

(10) s = 1 + sin ⁡ t 1 + cos ⁡ t s=\frac{1+\sin t}{1+\cos t} s=1+cost1+sint .

在这里插入图片描述

3. 求下列函数在给定点处的导数:

(1) y = sin ⁡ x − cos ⁡ x y=\sin x-\cos x y=sinxcosx, 求 y ′ ∣ x = π 6 \left.y^{\prime}\right|_{x=\frac{\pi}{6}} yx=6π y ′ ∣ x = π 4 \left.y^{\prime}\right|_{x=\frac{\pi}{4}} yx=4π;

(2) ρ = θ sin ⁡ θ + 1 2 cos ⁡ θ \rho=\theta \sin \theta+\frac{1}{2} \cos \theta ρ=θsinθ+21cosθ, 求 d ρ d θ ∣ θ = π 4 \left.\frac{\mathrm{d} \rho}{\mathrm{d} \theta}\right|_{\theta=\frac{\pi}{4}} dθdρθ=4π;

(3) f ( x ) = 3 5 − x + x 2 5 f(x)=\frac{3}{5-x}+\frac{x^2}{5} f(x)=5x3+5x2, 求 f ′ ( 0 ) f^{\prime}(0) f(0) f ′ ( 2 ) f^{\prime}(2) f(2).

在这里插入图片描述

4. 以初速度 v 0 v_0 v0 坚直上抛的物体, 其上升高度 s s s 与时间 t t t 的关系是 s = v 0 t − 1 2 g t 2 s=v_0 t-\frac{1}{2} g t^2 s=v0t21gt2. 求 :

(1) 该物体的速度 v ( t ) v(t) v(t);

(2) 该物体达到最高点的时刻.

在这里插入图片描述

5. 求曲线 y = 2 sin ⁡ x + x 2 y=2 \sin x+x^2 y=2sinx+x2 上横坐标为 x = 0 x=0 x=0 的点处的切线方程和法线方程.

在这里插入图片描述

6. 求下列函数的导数:

(1) y = ( 2 x + 5 ) 4 y=(2 x+5)^4 y=(2x+5)4;

(2) y = cos ⁡ ( 4 − 3 x ) y=\cos (4-3 x) y=cos(43x);

(3) y = e − 3 x 2 y=\mathrm{e}^{-3 x^2} y=e3x2;

(4) y = ln ⁡ ( 1 + x 2 ) y=\ln \left(1+x^2\right) y=ln(1+x2);

(5) y = sin ⁡ 2 x y=\sin ^2 x y=sin2x;

(6) y = a 2 − x 2 y=\sqrt{a^2-x^2} y=a2x2 ;

(7) y = tan ⁡ x 2 y=\tan x^2 y=tanx2;

(8) y = arctan ⁡ ( e x ) y=\arctan \left(\mathrm{e}^x\right) y=arctan(ex);

(9) y = ( arcsin ⁡ x ) 2 y=(\arcsin x)^2 y=(arcsinx)2;

(10) y = ln ⁡ cos ⁡ x y=\ln \cos x y=lncosx.

在这里插入图片描述

7. 求下列函数的导数:

(1) y = arcsin ⁡ ( 1 − 2 x ) y=\arcsin (1-2 x) y=arcsin(12x);
(2) y = 1 1 − x 2 y=\frac{1}{\sqrt{1-x^2}} y=1x2 1;

(3) y = e − x 2 cos ⁡ 3 x y=\mathrm{e}^{-\frac{x}{2}} \cos 3 x y=e2xcos3x;

(4) y = arccos ⁡ 1 x y=\arccos \frac{1}{x} y=arccosx1;

(5) y = 1 − ln ⁡ x 1 + ln ⁡ x y=\frac{1-\ln x}{1+\ln x} y=1+lnx1lnx;

(6) y = sin ⁡ 2 x x y=\frac{\sin 2 x}{x} y=xsin2x;

(7) y = arcsin ⁡ x y=\arcsin \sqrt{x} y=arcsinx ;

(8) y = ln ⁡ ( x + a 2 + x 2 ) y=\ln \left(x+\sqrt{a^2+x^2}\right) y=ln(x+a2+x2 );

在这里插入图片描述

(9) y = ln ⁡ ( sec ⁡ x + tan ⁡ x ) y=\ln (\sec x+\tan x) y=ln(secx+tanx);

(10) y = ln ⁡ ( csc ⁡ x − cot ⁡ x ) y=\ln (\csc x-\cot x) y=ln(cscxcotx).

在这里插入图片描述

8. 求下列函数的导数:

(1) y = ( arcsin ⁡ x 2 ) 2 y=\left(\arcsin \frac{x}{2}\right)^2 y=(arcsin2x)2;

(2) y = ln ⁡ tan ⁡ x 2 y=\ln \tan \frac{x}{2} y=lntan2x;

(3) y = 1 + ln ⁡ 2 x y=\sqrt{1+\ln ^2 x} y=1+ln2x ;

(4) y = e arctan ⁡ x y=\mathrm{e}^{\arctan \sqrt{x}} y=earctanx ;

(5) y = sin ⁡ n x cos ⁡ n x y=\sin ^n x \cos n x y=sinnxcosnx;

在这里插入图片描述

(6) y = arctan ⁡ x + 1 x − 1 y=\arctan \frac{x+1}{x-1} y=arctanx1x+1;

(7) y = arcsin ⁡ x arccos ⁡ x y=\frac{\arcsin x}{\arccos x} y=arccosxarcsinx;

(8) y = ln ⁡ ln ⁡ ln ⁡ x y=\ln \ln \ln x y=lnlnlnx;

在这里插入图片描述

(9) y = 1 + x − 1 − x 1 + x + 1 − x y=\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}} y=1+x +1x 1+x 1x ;

(10) y = arcsin ⁡ 1 − x 1 + x y=\arcsin \sqrt{\frac{1-x}{1+x}} y=arcsin1+x1x .

在这里插入图片描述

9. 设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 可导, 且 f 2 ( x ) + g 2 ( x ) ≠ 0 f^2(x)+g^2(x) \neq 0 f2(x)+g2(x)=0, 试求函数 y = f 2 ( x ) + g 2 ( x ) y=\sqrt{f^2(x)+g^2(x)} y=f2(x)+g2(x) 的导数.

在这里插入图片描述

10. 设 f ( x ) f(x) f(x) 可导,求下列函数的导数 d y   d x \frac{\mathrm{d} y}{\mathrm{~d} x}  dxdy

(1) y = f ( x 2 ) y=f\left(x^2\right) y=f(x2);

(2) y = f ( sin ⁡ 2 x ) + f ( cos ⁡ 2 x ) y=f\left(\sin ^2 x\right)+f\left(\cos ^2 x\right) y=f(sin2x)+f(cos2x).

在这里插入图片描述

11. 求下列函数的导数:

(1) y = e − x ( x 2 − 2 x + 3 ) y=\mathrm{e}^{-x}\left(x^2-2 x+3\right) y=ex(x22x+3);

(2) y = sin ⁡ 2 x ⋅ sin ⁡ ( x 2 ) y=\sin ^2 x \cdot \sin \left(x^2\right) y=sin2xsin(x2);

(3) y = ( arctan ⁡ x 2 ) 2 y=\left(\arctan \frac{x}{2}\right)^2 y=(arctan2x)2;

(4) y = ln ⁡ x x n y=\frac{\ln x}{x^n} y=xnlnx;

(5) y = e t − e − t e t + e − t y=\frac{\mathrm{e}^t-\mathrm{e}^{-t}}{\mathrm{e}^t+\mathrm{e}^{-t}} y=et+etetet;

在这里插入图片描述

(6) y = ln ⁡ cos ⁡ 1 x y=\ln \cos \frac{1}{x} y=lncosx1;

(7) y = e − sin ⁡ 2 1 x y=\mathrm{e}^{-\sin ^2 \frac{1}{x}} y=esin2x1;

(8) y = x + x y=\sqrt{x+\sqrt{x}} y=x+x ;

(9) y = x arcsin ⁡ x 2 + 4 − x 2 y=x \arcsin \frac{x}{2}+\sqrt{4-x^2} y=xarcsin2x+4x2 ;

在这里插入图片描述

(10) y = arcsin ⁡ 2 t 1 + t 2 y=\arcsin \frac{2 t}{1+t^2} y=arcsin1+t22t

在这里插入图片描述

12. 求下列函数的导数:

(1) y = ch ⁡ ( sh ⁡ x ) y=\operatorname{ch}(\operatorname{sh} x) y=ch(shx);

(2) y = sh ⁡ x ⋅ e c h x y=\operatorname{sh} x \cdot \mathrm{e}^{\mathrm{ch} x} y=shxechx;

(3) y = th ⁡ ( ln ⁡ x ) y=\operatorname{th}(\ln x) y=th(lnx);

(4) y = sh ⁡ 3 x + ch ⁡ 2 x y=\operatorname{sh}^3 x+\operatorname{ch}^2 x y=sh3x+ch2x;

(5) y = th ⁡ ( 1 − x 2 ) y=\operatorname{th}\left(1-x^2\right) y=th(1x2);

(6) y = arsh ⁡ ( x 2 + 1 ) y=\operatorname{arsh}\left(x^2+1\right) y=arsh(x2+1);

在这里插入图片描述

(7) y = arch ⁡ ( e 2 x ) y=\operatorname{arch}\left(\mathrm{e}^{2 x}\right) y=arch(e2x);

(8) y = arctan ⁡ ( th ⁡ x ) y=\arctan (\operatorname{th} x) y=arctan(thx);

(9) y = ln ⁡ ch ⁡ x + 1 2 ch ⁡ 2 x y=\ln \operatorname{ch} x+\frac{1}{2 \operatorname{ch}^2 x} y=lnchx+2ch2x1;

(10) y = ch ⁡ 2 ( x − 1 x + 1 ) y=\operatorname{ch}^2\left(\frac{x-1}{x+1}\right) y=ch2(x+1x1).

在这里插入图片描述

13. 设函数 f ( x ) f(x) f(x) g ( x ) g(x) g(x) 均在点 x 0 x_0 x0 的某一邻域内有定义, f ( x ) f(x) f(x) x 0 x_0 x0 处可导, f ( x 0 ) = 0 , g ( x ) f\left(x_0\right)=0, g(x) f(x0)=0,g(x) x 0 x_0 x0 处连续,试讨论 f ( x ) g ( x ) f(x) g(x) f(x)g(x) x 0 x_0 x0 处的可导性.

在这里插入图片描述

14. 设函数 f ( x ) f(x) f(x) 满足下列条件:

(1) f ( x + y ) = f ( x ) ⋅ f ( y ) f(x+y)=f(x) \cdot f(y) f(x+y)=f(x)f(y), 对一切 x , y ∈ R x, y \in \mathbf{R} x,yR;

(2) f ( x ) = 1 + x g ( x ) f(x)=1+x g(x) f(x)=1+xg(x), 而 lim ⁡ x → 0 g ( x ) = 1 \lim _{x \rightarrow 0} g(x)=1 limx0g(x)=1.

试证明 f ( x ) f(x) f(x) R \mathbf{R} R 上处处可导, 且 f ′ ( x ) = f ( x ) f^{\prime}(x)=f(x) f(x)=f(x).

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值