总习题二
1. 在“充分”“必要”和“充分必要”三者中选择一个正确的填人下列空格内:
(1) f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可导是 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 连续的 充分 条件. f ( x ) f(x) f(x) 在点 x 0 x_0 x0 连续是 f ( x ) f(x) f(x) 在 点 x 0 x_0 x0 可导的 必要 条件.
(2) f ( x ) f(x) f(x) 在点 x 0 x_0 x0 的左导数 f − ′ ( x 0 ) f_{-}^{\prime}\left(x_0\right) f−′(x0) 及右导数 f + ′ ( x 0 ) f_{+}^{\prime}\left(x_0\right) f+′(x0) 都存在且相等是 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可导的 充分必要 条件.
(3) f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可导是 f ( x ) f(x) f(x) 在点 x 0 x_0 x0 可微的 充分必要 条件.
2. 设 f ( x ) = x ( x + 1 ) ( x + 2 ) ⋯ ( x + n ) ( n ⩾ 2 ) f(x)=x(x+1)(x+2) \cdots(x+n)(n \geqslant 2) f(x)=x(x+1)(x+2)⋯(x+n)(n⩾2), 则 f ′ ( 0 ) = f^{\prime}(0)= f′(0)=
3. 述题中给出了四个结论, 从中选出一个正确的结论:
设 f ( x ) f(x) f(x) 在 x = a x=a x=a 的某个邻域内有定义,则 f ( x ) f(x) f(x) 在 x = a x=a x=a 处可导的一个充分条件是 【 D 】。
(A) lim h → + ∞ h [ f ( a + 1 h ) − f ( a ) ] \lim _{h \rightarrow+\infty} h\left[f\left(a+\frac{1}{h}\right)-f(a)\right] limh→+∞h[f(a+h1)−f(a)] 存在.
(B) lim h → 0 f ( a + 2 h ) − f ( a + h ) h \lim _{h \rightarrow 0} \frac{f(a+2 h)-f(a+h)}{h} limh→0hf(a+2h)−f(a+h) 存在.
(C) lim h → 0 f ( a + h ) − f ( a − h ) 2 h \lim _{h \rightarrow 0} \frac{f(a+h)-f(a-h)}{2 h} limh→02hf(a+h)−f(a−h) 存在.
(D) lim h → 0 f ( a ) − f ( a − h ) h \lim _{h \rightarrow 0} \frac{f(a)-f(a-h)}{h} limh→0hf(a)−f(a−h) 存在.
4. 设有一根细棒, 取棒的一端作为原点,棒上任意点的坐标为 x x x,于是分布在区间 [ 0 , x ] [0, x] [0,x] 上细棒的质量 m m m 与 x x x 存在函数关系 m = m ( x ) m=m(x) m=m(x). 应怎样确定细棒在点 x 0 x_0 x0 处的线密度 (对于均匀细棒来说, 单位长度细棒的质量叫做这细棒的线密度)?
5. 根据导数的定义, 求 f ( x ) = 1 x f(x)=\frac{1}{x} f(x)=x1 的导数.
6. 求下列函数 f ( x ) f(x) f(x) 的 f − ′ ( 0 ) f_{-}^{\prime}(0) f−′(0) 及 f + ′ ( 0 ) f_{+}^{\prime}(0) f+′(0), 又 f ′ ( 0 ) f^{\prime}(0) f′(0) 是否存在:
(1) f ( x ) = { sin x , x < 0 ln ( 1 + x ) , x ⩾ 0 ; f(x)= \begin{cases}\sin x, & x<0 \\{\ln (1+x),} &{x \geqslant 0 ;}\end{cases} f(x)={sinx,ln(1+x),x<0x⩾0;
(2) f ( x ) = { x 1 + e 1 x , x ≠ 0 , 0 , x = 0. f(x)= \begin{cases}\frac{x}{1+\mathrm{e}^{\frac{1}{x}}}, & x \neq 0, \\ 0, & x=0 .\end{cases} f(x)={1+ex1x,0,x=0,x=0.
7. 讨论函数
f ( x ) = { x sin 1 x , x ≠ 0 , 0 , x = 0 f(x)= \begin{cases}x \sin \frac{1}{x}, & x \neq 0, \\ 0, & x=0\end{cases} f(x)={xsinx1,0,x=0,x=0
在 x = 0 x=0 x=0 处的连续性与可导性.
8. 求下列函数的导数:
(1) y = arcsin ( sin x ) y=\arcsin (\sin x) y=arcsin(sinx);
(2) y = arctan 1 + x 1 − x y=\arctan \frac{1+x}{1-x} y=arctan1−x1+x;
(3) y = ln tan x 2 − cos x ⋅ ln tan x y=\ln \tan \frac{x}{2}-\cos x \cdot \ln \tan x y=lntan2x−cosx⋅lntanx;
(4) y = ln ( e x + 1 + e 2 x ) y=\ln \left(\mathrm{e}^x+\sqrt{1+\mathrm{e}^{2 x}}\right) y=ln(ex+1+e2x);
(5) y = x 1 x ( x > 0 ) y=x^{\frac{1}{x}}(x>0) y=xx1(x>0).
9. 求下列函数的二阶导数:
(1) y = cos 2 x ⋅ ln x y=\cos ^2 x \cdot \ln x y=cos2x⋅lnx;
(2) y = x 1 − x 2 y=\frac{x}{\sqrt{1-x^2}} y=1−x2x.
10. 求下列函数的 n n n 阶导数:
(1) y = 1 + x m y=\sqrt[m]{1+x} y=m1+x;
(2) y = 1 − x 1 + x y=\frac{1-x}{1+x} y=1+x1−x.
11. 设函数 y = y ( x ) y=y(x) y=y(x) 由方程 e y + x y = e \mathrm{e}^y+x y=\mathrm{e} ey+xy=e 所确定, 求 y ′ ′ ( 0 ) y^{\prime \prime}(0) y′′(0).
12. 求下列由参数方程所确定的函数的一阶导数 d y d x \frac{\mathrm{d} y}{\mathrm{~d} x} dxdy 及二阶导数 d 2 y d x 2 \frac{\mathrm{d}^2 y}{\mathrm{~d} x^2} dx2d2y :
(1) { x = a cos 3 θ , y = a sin 3 θ ; \left\{\begin{array}{l}x=a \cos ^3 \theta, \\ y=a \sin ^3 \theta ;\end{array}\right. {x=acos3θ,y=asin3θ;
(2) { x = ln 1 + t 2 , y = arctan t . \left\{\begin{array}{l}x=\ln \sqrt{1+t^2}, \\ y=\arctan t .\end{array}\right. {x=ln1+t2,y=arctant.
13. 求曲线 { x = 2 e t , y = e − t \left\{\begin{array}{l}x=2 \mathrm{e}^t, \\ y=\mathrm{e}^{-t}\end{array}\right. {x=2et,y=e−t 在 t = 0 t=0 t=0 相应的点处的切线方程及法线方程.
14. 已知 f ( x ) f(x) f(x) 是周期为 5 的连续函数, 它在 x = 0 x=0 x=0 的某个邻域内满足关系式
f ( 1 + sin x ) − 3 f ( 1 − sin x ) = 8 x + o ( x ) , f(1+\sin x)-3 f(1-\sin x)=8 x+o(x), f(1+sinx)−3f(1−sinx)=8x+o(x),
且 f ( x ) f(x) f(x) 在 x = 1 x=1 x=1 处可导, 求曲线 y = f ( x ) y=f(x) y=f(x) 在点 ( 6 , f ( 6 ) ) (6, f(6)) (6,f(6)) 处的切线方程.