【课后习题】高等数学第七版上第七章 微分方程 第八节 常系数非齐次线性微分方程

文章提供了一系列线性微分方程的求解,包括通解和特解,涵盖了不同系数和非齐次项的情况。同时,讨论了含源串联RLC电路的充电过程和物理问题,如大炮弹道曲线的计算以及摩擦力对动态过程的影响。此外,还涉及了一种特殊函数的积分表达式及其解法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

习题7-8

1. 求下列各微分方程的通解:

(1) 2 y ′ ′ + y ′ − y = 2 e x 2 y^{\prime \prime}+y^{\prime}-y=2 \mathrm{e}^x 2y+yy=2ex;

在这里插入图片描述

(2) y ′ ′ + a 2 y = e x y^{\prime \prime}+a^2 y=\mathrm{e}^x y+a2y=ex;

在这里插入图片描述

(3) 2 y ′ ′ + 5 y ′ = 5 x 2 − 2 x − 1 2 y^{\prime \prime}+5 y^{\prime}=5 x^2-2 x-1 2y+5y=5x22x1;

在这里插入图片描述

(4) y ′ ′ + 3 y ′ + 2 y = 3 x e − x y^{\prime \prime}+3 y^{\prime}+2 y=3 x \mathrm{e}^{-x} y+3y+2y=3xex;

在这里插入图片描述

(5) y ′ ′ − 2 y ′ + 5 y = e x sin ⁡ 2 x y^{\prime \prime}-2 y^{\prime}+5 y=\mathrm{e}^x \sin 2 x y2y+5y=exsin2x;

在这里插入图片描述

(6) y ′ ′ − 6 y ′ + 9 y = ( x + 1 ) e 3 x y^{\prime \prime}-6 y^{\prime}+9 y=(x+1) \mathrm{e}^{3 x} y6y+9y=(x+1)e3x;

在这里插入图片描述

(7) y ′ ′ + 5 y ′ + 4 y = 3 − 2 x y^{\prime \prime}+5 y^{\prime}+4 y=3-2 x y+5y+4y=32x;

在这里插入图片描述

(8) y ′ ′ + 4 y = x cos ⁡ x y^{\prime \prime}+4 y=x \cos x y+4y=xcosx;

在这里插入图片描述

(9) y ′ ′ + y = e x + cos ⁡ x y^{\prime \prime}+y=\mathrm{e}^x+\cos x y+y=ex+cosx;

在这里插入图片描述

(10) y ′ ′ − y = sin ⁡ 2 x y^{\prime \prime}-y=\sin ^2 x yy=sin2x.

在这里插入图片描述

2. 求下列各微分方程满足已给初值条件的特解:

(1) y ′ ′ + y + sin ⁡ 2 x = 0 , y ∣ x = π = 1 , y ′ ∣ x = π = 1 y^{\prime \prime}+y+\sin 2 x=0,\left.y\right|_{x=\pi}=1,\left.y^{\prime}\right|_{x=\pi}=1 y+y+sin2x=0,yx=π=1,yx=π=1;

在这里插入图片描述

(2) y ′ ′ − 3 y ′ + 2 y = 5 , y ∣ x = 0 = 1 , y ′ ∣ x = 0 = 2 y^{\prime \prime}-3 y^{\prime}+2 y=5,\left.y\right|_{x=0}=1,\left.y^{\prime}\right|_{x=0}=2 y3y+2y=5,yx=0=1,yx=0=2;

在这里插入图片描述

(3) y ′ ′ − 10 y ′ + 9 y = e 2 x , y ∣ x = 0 = 6 7 , y ′ ∣ x = 0 = 33 7 y^{\prime \prime}-10 y^{\prime}+9 y=\mathrm{e}^{2 x},\left.y\right|_{x=0}=\frac{6}{7},\left.y^{\prime}\right|_{x=0}=\frac{33}{7} y10y+9y=e2x,yx=0=76,yx=0=733;

在这里插入图片描述

(4) y ′ ′ − y = 4 x e x , y ∣ x = 0 = 0 , y ′ ∣ x = 0 = 1 y^{\prime \prime}-y=4 x \mathrm{e}^x,\left.y\right|_{x=0}=0,\left.y^{\prime}\right|_{x=0}=1 yy=4xex,yx=0=0,yx=0=1;

在这里插入图片描述

(5) y ′ ′ − 4 y ′ = 5 , y ∣ x = 0 = 1 , y ′ ∣ x = 0 = 0 y^{\prime \prime}-4 y^{\prime}=5,\left.y\right|_{x=0}=1,\left.y^{\prime}\right|_{x=0}=0 y4y=5,yx=0=1,yx=0=0.

在这里插入图片描述

3. 大炮以仰角 α \alpha α 、初速度 v 0 v_0 v0 发射炮弹, 若不计空气阻力, 求弹道曲线.

在这里插入图片描述

4. 在 R L C R L C RLC 含源串联电路中, 电动势为 E E E 的电源对电容器 C C C 充电. 已知 E = 20   V E=20 \mathrm{~V} E=20 V, C = 0.2 μ F , L = 0.1 H , R = 1000 Ω C=0.2 \mu \mathrm{F}, L=0.1 \mathrm{H}, R=1000 \Omega C=0.2μF,L=0.1H,R=1000Ω, 试求合上开关 S \mathrm{S} S 后的电流 i ( t ) i(t) i(t) 及电压 u c ( t ) u_c(t) uc(t).

在这里插入图片描述

5. 一链条悬挂在一钉子上, 起动时一端离开钉子 8   m 8 \mathrm{~m} 8 m 另一端离开钉子 12   m 12 \mathrm{~m} 12 m, 分别在以下 两种情况下求链条滑下来所需要的时间:

(1)若不计钉子对链条所产生的摩擦力;

在这里插入图片描述

在这里插入图片描述

(2)若摩擦力的大小等于 1   m 1 \mathrm{~m} 1 m 长的链条所受重力的大小.

在这里插入图片描述

6. 设函数 φ ( x ) \varphi(x) φ(x) 连续, 且满足

φ ( x ) = e x + ∫ 0 x t φ ( t ) d t − x ∫ 0 x φ ( t ) d t , \varphi(x)=\mathrm{e}^x+\int_0^x t \varphi(t) \mathrm{d} t-x \int_0^x \varphi(t) \mathrm{d} t, φ(x)=ex+0xtφ(t)dtx0xφ(t)dt,
φ ( x ) \varphi(x) φ(x).

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值