习题7-8
1. 求下列各微分方程的通解:
(1) 2 y ′ ′ + y ′ − y = 2 e x 2 y^{\prime \prime}+y^{\prime}-y=2 \mathrm{e}^x 2y′′+y′−y=2ex;
(2) y ′ ′ + a 2 y = e x y^{\prime \prime}+a^2 y=\mathrm{e}^x y′′+a2y=ex;
(3) 2 y ′ ′ + 5 y ′ = 5 x 2 − 2 x − 1 2 y^{\prime \prime}+5 y^{\prime}=5 x^2-2 x-1 2y′′+5y′=5x2−2x−1;
(4) y ′ ′ + 3 y ′ + 2 y = 3 x e − x y^{\prime \prime}+3 y^{\prime}+2 y=3 x \mathrm{e}^{-x} y′′+3y′+2y=3xe−x;
(5) y ′ ′ − 2 y ′ + 5 y = e x sin 2 x y^{\prime \prime}-2 y^{\prime}+5 y=\mathrm{e}^x \sin 2 x y′′−2y′+5y=exsin2x;
(6) y ′ ′ − 6 y ′ + 9 y = ( x + 1 ) e 3 x y^{\prime \prime}-6 y^{\prime}+9 y=(x+1) \mathrm{e}^{3 x} y′′−6y′+9y=(x+1)e3x;
(7) y ′ ′ + 5 y ′ + 4 y = 3 − 2 x y^{\prime \prime}+5 y^{\prime}+4 y=3-2 x y′′+5y′+4y=3−2x;
(8) y ′ ′ + 4 y = x cos x y^{\prime \prime}+4 y=x \cos x y′′+4y=xcosx;
(9) y ′ ′ + y = e x + cos x y^{\prime \prime}+y=\mathrm{e}^x+\cos x y′′+y=ex+cosx;
(10) y ′ ′ − y = sin 2 x y^{\prime \prime}-y=\sin ^2 x y′′−y=sin2x.
2. 求下列各微分方程满足已给初值条件的特解:
(1) y ′ ′ + y + sin 2 x = 0 , y ∣ x = π = 1 , y ′ ∣ x = π = 1 y^{\prime \prime}+y+\sin 2 x=0,\left.y\right|_{x=\pi}=1,\left.y^{\prime}\right|_{x=\pi}=1 y′′+y+sin2x=0,y∣x=π=1,y′∣x=π=1;
(2) y ′ ′ − 3 y ′ + 2 y = 5 , y ∣ x = 0 = 1 , y ′ ∣ x = 0 = 2 y^{\prime \prime}-3 y^{\prime}+2 y=5,\left.y\right|_{x=0}=1,\left.y^{\prime}\right|_{x=0}=2 y′′−3y′+2y=5,y∣x=0=1,y′∣x=0=2;
(3) y ′ ′ − 10 y ′ + 9 y = e 2 x , y ∣ x = 0 = 6 7 , y ′ ∣ x = 0 = 33 7 y^{\prime \prime}-10 y^{\prime}+9 y=\mathrm{e}^{2 x},\left.y\right|_{x=0}=\frac{6}{7},\left.y^{\prime}\right|_{x=0}=\frac{33}{7} y′′−10y′+9y=e2x,y∣x=0=76,y′∣x=0=733;
(4) y ′ ′ − y = 4 x e x , y ∣ x = 0 = 0 , y ′ ∣ x = 0 = 1 y^{\prime \prime}-y=4 x \mathrm{e}^x,\left.y\right|_{x=0}=0,\left.y^{\prime}\right|_{x=0}=1 y′′−y=4xex,y∣x=0=0,y′∣x=0=1;
(5) y ′ ′ − 4 y ′ = 5 , y ∣ x = 0 = 1 , y ′ ∣ x = 0 = 0 y^{\prime \prime}-4 y^{\prime}=5,\left.y\right|_{x=0}=1,\left.y^{\prime}\right|_{x=0}=0 y′′−4y′=5,y∣x=0=1,y′∣x=0=0.
3. 大炮以仰角 α \alpha α 、初速度 v 0 v_0 v0 发射炮弹, 若不计空气阻力, 求弹道曲线.
4. 在 R L C R L C RLC 含源串联电路中, 电动势为 E E E 的电源对电容器 C C C 充电. 已知 E = 20 V E=20 \mathrm{~V} E=20 V, C = 0.2 μ F , L = 0.1 H , R = 1000 Ω C=0.2 \mu \mathrm{F}, L=0.1 \mathrm{H}, R=1000 \Omega C=0.2μF,L=0.1H,R=1000Ω, 试求合上开关 S \mathrm{S} S 后的电流 i ( t ) i(t) i(t) 及电压 u c ( t ) u_c(t) uc(t).
5. 一链条悬挂在一钉子上, 起动时一端离开钉子 8 m 8 \mathrm{~m} 8 m 另一端离开钉子 12 m 12 \mathrm{~m} 12 m, 分别在以下 两种情况下求链条滑下来所需要的时间:
(1)若不计钉子对链条所产生的摩擦力;
(2)若摩擦力的大小等于 1 m 1 \mathrm{~m} 1 m 长的链条所受重力的大小.
6. 设函数 φ ( x ) \varphi(x) φ(x) 连续, 且满足
φ
(
x
)
=
e
x
+
∫
0
x
t
φ
(
t
)
d
t
−
x
∫
0
x
φ
(
t
)
d
t
,
\varphi(x)=\mathrm{e}^x+\int_0^x t \varphi(t) \mathrm{d} t-x \int_0^x \varphi(t) \mathrm{d} t,
φ(x)=ex+∫0xtφ(t)dt−x∫0xφ(t)dt,
求
φ
(
x
)
\varphi(x)
φ(x).