【课后习题】高等数学第七版下第九章 多元函数微分法及其应用 第三节 全微分

习题9-3

1. 求下列函数的全微分:

(1) z = x y + x y z=x y+\frac{x}{y} z=xy+yx;

(2) z = e 2 x z=\mathrm{e}^{\frac{2}{x}} z=ex2;

在这里插入图片描述

(3) z = y x 2 + y 2 z=\frac{y}{\sqrt{x^2+y^2}} z=x2+y2 y;

(4) u = x y z u=x^{y z} u=xyz.

在这里插入图片描述

2. 求函数 z = ln ⁡ ( 1 + x 2 + y 2 ) z=\ln \left(1+x^2+y^2\right) z=ln(1+x2+y2) x = 1 , y = 2 x=1, y=2 x=1,y=2 时的全微分.

在这里插入图片描述

3. 求函数 z = y x z=\frac{y}{x} z=xy x = 2 , y = 1 , Δ x = 0.1 , Δ y = − 0.2 x=2, y=1, \Delta x=0.1, \Delta y=-0.2 x=2,y=1,Δx=0.1,Δy=0.2 时的全增量和全微分.

在这里插入图片描述

4. 求函数 z = e x y z=\mathrm{e}^{x y} z=exy x = 1 , y = 1 , Δ x = 0.15 , Δ y = 0.1 x=1, y=1, \Delta x=0.15, \Delta y=0.1 x=1,y=1,Δx=0.15,Δy=0.1 时的全微分.

在这里插入图片描述

5. 考虑二元函数 f ( x , y ) f(x, y) f(x,y) 的下面四条性质 :

(1) f ( x , y ) f(x, y) f(x,y) 在点 ( x 0 , y 0 ) \left(x_0, y_0\right) (x0,y0) 连续;

(2) f x ( x , y ) 、 f y ( x , y ) f_x(x, y) 、 f_y(x, y) fx(x,y)fy(x,y) 在点 ( x 0 , y 0 ) \left(x_0, y_0\right) (x0,y0) 连续;

(3) f ( x , y ) f(x, y) f(x,y) 在点 ( x 0 , y 0 ) \left(x_0, y_0\right) (x0,y0) 可微分;

(4) f x ( x 0 , y 0 ) 、 f y ( x 0 , y 0 ) f_x\left(x_0, y_0\right) 、 f_y\left(x_0, y_0\right) fx(x0,y0)fy(x0,y0) 存在.

若用“ P ⇒ Q P \Rightarrow Q PQ ” 表示可由性质 P P P 推出性质 Q Q Q, 则下列四个选项中正确的是 ( A ).

(A) (2) ⇒ \Rightarrow (3) ⇒ \Rightarrow (1)

(B) ( 3 ) ⇒ ( 2 ) ⇒ (3) \Rightarrow(2) \Rightarrow (3)(2) (1)

(C ) (3) ⇒ \Rightarrow (4) ⇒ \Rightarrow (1)

(D) ( 3 ) ⇒ ( 1 ) ⇒ ( 4 ) (3) \Rightarrow(1) \Rightarrow(4) (3)(1)(4)

在这里插入图片描述

6. 计算 ( 1.02 ) 3 + ( 1.97 ) 3 \sqrt{(1.02)^3+(1.97)^3} (1.02)3+(1.97)3 的近似值.

在这里插入图片描述

7. 计算 ( 1.97 ) 1.05 (1.97)^{1.05} (1.97)1.05 的近似值 ( ln ⁡ 2 = 0.693 ) (\ln 2=0.693) (ln2=0.693).

在这里插入图片描述

8. 已知边长为 x = 6   m x=6 \mathrm{~m} x=6 m y = 8   m y=8 \mathrm{~m} y=8 m 的矩形, 如果 x x x 边增加 5   c m 5 \mathrm{~cm} 5 cm y y y 边减少 10   c m 10 \mathrm{~cm} 10 cm, 问这个矩形的对角线的近似变化怎样?

在这里插入图片描述

9. 设有一无盖圆柱形容器, 容器的壁与底的厚度均为 0.1   c m 0.1 \mathrm{~cm} 0.1 cm, 内高为 20   c m 20 \mathrm{~cm} 20 cm, 内半径为 4   c m 4 \mathrm{~cm} 4 cm. 求容器外壳体积的近似值.

在这里插入图片描述

10. 设有直角三角形, 测得其两直角边的长分别为 ( 7 ± 0.1 ) c m (7 \pm 0.1) \mathrm{cm} (7±0.1)cm ( 24 ± 0.1 ) c m (24 \pm 0.1) \mathrm{cm} (24±0.1)cm. 试求 利用上述两值来计算斜边长度时的绝对误差.

在这里插入图片描述

11. 测得一块三角形土地的两边边长分别为 ( 63 ± 0.1 ) m (63 \pm 0.1) \mathrm{m} (63±0.1)m ( 78 ± 0.1 ) m (78 \pm 0.1) \mathrm{m} (78±0.1)m, 这两边的夹 角为 6 0 ∘ ± 1 ∘ 60^{\circ} \pm 1^{\circ} 60±1. 试求三角形面积的近似值, 并求其绝对误差和相对误差.

在这里插入图片描述

12. 利用全微分证明: 两数之和的绝对误差等于它们各自的绝对误差之和.

在这里插入图片描述

13. 利用全微分证明:乘积的相对误差等于各因子的相对误差之和, 商的相对误差等于 被除数及除数的相对误差之和.

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值