习题9-3
1. 求下列函数的全微分:
(1) z = x y + x y z=x y+\frac{x}{y} z=xy+yx;
(2) z = e 2 x z=\mathrm{e}^{\frac{2}{x}} z=ex2;
(3) z = y x 2 + y 2 z=\frac{y}{\sqrt{x^2+y^2}} z=x2+y2y;
(4) u = x y z u=x^{y z} u=xyz.
2. 求函数 z = ln ( 1 + x 2 + y 2 ) z=\ln \left(1+x^2+y^2\right) z=ln(1+x2+y2) 当 x = 1 , y = 2 x=1, y=2 x=1,y=2 时的全微分.
3. 求函数 z = y x z=\frac{y}{x} z=xy 当 x = 2 , y = 1 , Δ x = 0.1 , Δ y = − 0.2 x=2, y=1, \Delta x=0.1, \Delta y=-0.2 x=2,y=1,Δx=0.1,Δy=−0.2 时的全增量和全微分.
4. 求函数 z = e x y z=\mathrm{e}^{x y} z=exy 当 x = 1 , y = 1 , Δ x = 0.15 , Δ y = 0.1 x=1, y=1, \Delta x=0.15, \Delta y=0.1 x=1,y=1,Δx=0.15,Δy=0.1 时的全微分.
5. 考虑二元函数 f ( x , y ) f(x, y) f(x,y) 的下面四条性质 :
(1) f ( x , y ) f(x, y) f(x,y) 在点 ( x 0 , y 0 ) \left(x_0, y_0\right) (x0,y0) 连续;
(2) f x ( x , y ) 、 f y ( x , y ) f_x(x, y) 、 f_y(x, y) fx(x,y)、fy(x,y) 在点 ( x 0 , y 0 ) \left(x_0, y_0\right) (x0,y0) 连续;
(3) f ( x , y ) f(x, y) f(x,y) 在点 ( x 0 , y 0 ) \left(x_0, y_0\right) (x0,y0) 可微分;
(4) f x ( x 0 , y 0 ) 、 f y ( x 0 , y 0 ) f_x\left(x_0, y_0\right) 、 f_y\left(x_0, y_0\right) fx(x0,y0)、fy(x0,y0) 存在.
若用“ P ⇒ Q P \Rightarrow Q P⇒Q ” 表示可由性质 P P P 推出性质 Q Q Q, 则下列四个选项中正确的是 ( A ).
(A) (2) ⇒ \Rightarrow ⇒ (3) ⇒ \Rightarrow ⇒ (1)
(B) ( 3 ) ⇒ ( 2 ) ⇒ (3) \Rightarrow(2) \Rightarrow (3)⇒(2)⇒ (1)
(C ) (3) ⇒ \Rightarrow ⇒ (4) ⇒ \Rightarrow ⇒ (1)
(D) ( 3 ) ⇒ ( 1 ) ⇒ ( 4 ) (3) \Rightarrow(1) \Rightarrow(4) (3)⇒(1)⇒(4)