【课后习题】高等数学第七版下第九章 多元函数微分法及其应用 第四节 多元复合函数的求导法则

这篇文章包含一系列多元函数微分学的问题,涉及偏导数的计算,如复合函数、指数与对数函数、三角函数的偏导数,以及高阶偏导数。题目要求求解不同变量之间的偏导数关系,以及验证某些偏导数的性质和等式。这些问题考察了读者对多元函数微分的理解和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

习题9-4

1. 设 z = u 2 + v 2 z=u^2+v^2 z=u2+v2, 而 u = x + y , v = x − y u=x+y, v=x-y u=x+y,v=xy, 求 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} xz,yz.

在这里插入图片描述

2. 设 z = u 2 ln ⁡ v z=u^2 \ln v z=u2lnv, 而 u = x y , v = 3 x − 2 y u=\frac{x}{y}, v=3 x-2 y u=yx,v=3x2y, 求 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} xz,yz.

在这里插入图片描述

3. 设 z = e x − 2 y z=\mathrm{e}^{x-2y} z=ex2y, 而 x = sin ⁡ t , y = t 3 x=\sin t, y=t^3 x=sint,y=t3, 求 d z   d t \frac{\mathrm{d} z}{\mathrm{~d} t}  dtdz.

在这里插入图片描述

4. 设 z = arcsin ⁡ ( x − y ) z=\arcsin (x-y) z=arcsin(xy), 而 x = 3 t , y = 4 t 3 x=3 t, y=4 t^3 x=3t,y=4t3, 求 d z   d t \frac{\mathrm{d} z}{\mathrm{~d} t}  dtdz.

在这里插入图片描述

5. 设 z = arctan ⁡ ( x y ) z=\arctan (x y) z=arctan(xy), 而 y = e x y=\mathrm{e}^{\mathrm{x}} y=ex, 求 d z   d x \frac{\mathrm{d} z}{\mathrm{~d} x}  dxdz.

在这里插入图片描述

6. 设 u = e a x ( y − z ) a 2 + 1 u=\frac{\mathrm{e}^{a x}(y-z)}{a^2+1} u=a2+1eax(yz), 而 y = a sin ⁡ x , z = cos ⁡ x y=a \sin x, z=\cos x y=asinx,z=cosx, 求 d u   d x \frac{\mathrm{d} u}{\mathrm{~d} x}  dxdu.

在这里插入图片描述

7. 设 z = arctan ⁡ x y z=\arctan \frac{x}{y} z=arctanyx, 而 x = u + v , y = u − v x=u+v, y=u-v x=u+v,y=uv, 验证

∂ z ∂ u + ∂ z ∂ v = u − v u 2 + v 2 . \frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=\frac{u-v}{u^2+v^2} . uz+vz=u2+v2uv.

在这里插入图片描述

8. 求下列函数的一阶偏导数(其中 f f f 具有一阶连续偏导数):

(1) u = f ( x 2 − y 2 , e x y ) u=f\left(x^2-y^2, \mathrm{e}^{x y}\right) u=f(x2y2,exy);

(2) u = f ( x y , y z ) u=f\left(\frac{x}{y}, \frac{y}{z}\right) u=f(yx,zy);

(3) u = f ( x , x y , x y z ) u=f(x, x y, x y z) u=f(x,xy,xyz).

在这里插入图片描述

9. 设 z = x y + x F ( u ) z=x y+x F(u) z=xy+xF(u), 而 u = y x , F ( u ) u=\frac{y}{x}, F(u) u=xy,F(u) 为可导函数, 证明

x ∂ z ∂ x + y ∂ z ∂ y = z + x y . x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z+x y . xxz+yyz=z+xy.

在这里插入图片描述

10. 设 z = y f ( x 2 − y 2 ) z=\frac{y}{f\left(x^2-y^2\right)} z=f(x2y2)y, 其中 f ( u ) f(u) f(u) 为可导函数, 验证

1 x ∂ z ∂ x + 1 y ∂ z ∂ y = z y 2 . \frac{1}{x} \frac{\partial z}{\partial x}+\frac{1}{y} \frac{\partial z}{\partial y}=\frac{z}{y^2} . x1xz+y1yz=y2z.

在这里插入图片描述

11. 设 z = f ( x 2 + y 2 ) z=f\left(x^2+y^2\right) z=f(x2+y2), 其中 f f f 具有二阶导数, 求 ∂ 2 z ∂ x 2 , ∂ 2 z ∂ x ∂ y , ∂ 2 z ∂ y 2 \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y^2} x22z,xy2z,y22z.

在这里插入图片描述

12. 求下列函数的 ∂ 2 z ∂ x 2 , ∂ 2 z ∂ x ∂ y , ∂ 2 z ∂ y 2 \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y^2} x22z,xy2z,y22z (其中 f f f 具有二阶连续偏导数):

(1) z = f ( x y , y ) z=f(x y, y) z=f(xy,y);

在这里插入图片描述

(2) z = f ( x , x y ) z=f\left(x, \frac{x}{y}\right) z=f(x,yx);

在这里插入图片描述

(3) z = f ( x y 2 , x 2 y ) z=f\left(x y^2, x^2 y\right) z=f(xy2,x2y);

在这里插入图片描述

(4) z = f ( sin ⁡ x , cos ⁡ y , e x + y ) z=f\left(\sin x, \cos y, \mathrm{e}^{x+y}\right) z=f(sinx,cosy,ex+y).

在这里插入图片描述

13. 设 u = f ( x , y ) u=f(x, y) u=f(x,y) 的所有二阶偏导数连续, 而

x = s − 3 t 2 , y = 3 s + t 2 , x=\frac{s-\sqrt{3} t}{2}, \quad y=\frac{\sqrt{3} s+t}{2}, x=2s3 t,y=23 s+t,
证明
( ∂ u ∂ x ) 2 + ( ∂ u ∂ y ) 2 = ( ∂ u ∂ s ) 2 + ( ∂ u ∂ t ) 2  及  ∂ 2 u ∂ x 2 + ∂ 2 u ∂ y 2 = ∂ 2 u ∂ s 2 + ∂ 2 u ∂ t 2 .  \left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2=\left(\frac{\partial u}{\partial s}\right)^2+\left(\frac{\partial u}{\partial t}\right)^2 \text { 及 } \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 u}{\partial s^2}+\frac{\partial^2 u}{\partial t^2} \text {. } (xu)2+(yu)2=(su)2+(tu)2  x22u+y22u=s22u+t22u

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值