习题9-4
1. 设 z = u 2 + v 2 z=u^2+v^2 z=u2+v2, 而 u = x + y , v = x − y u=x+y, v=x-y u=x+y,v=x−y, 求 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} ∂x∂z,∂y∂z.
2. 设 z = u 2 ln v z=u^2 \ln v z=u2lnv, 而 u = x y , v = 3 x − 2 y u=\frac{x}{y}, v=3 x-2 y u=yx,v=3x−2y, 求 ∂ z ∂ x , ∂ z ∂ y \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y} ∂x∂z,∂y∂z.
3. 设 z = e x − 2 y z=\mathrm{e}^{x-2y} z=ex−2y, 而 x = sin t , y = t 3 x=\sin t, y=t^3 x=sint,y=t3, 求 d z d t \frac{\mathrm{d} z}{\mathrm{~d} t} dtdz.
4. 设 z = arcsin ( x − y ) z=\arcsin (x-y) z=arcsin(x−y), 而 x = 3 t , y = 4 t 3 x=3 t, y=4 t^3 x=3t,y=4t3, 求 d z d t \frac{\mathrm{d} z}{\mathrm{~d} t} dtdz.
5. 设 z = arctan ( x y ) z=\arctan (x y) z=arctan(xy), 而 y = e x y=\mathrm{e}^{\mathrm{x}} y=ex, 求 d z d x \frac{\mathrm{d} z}{\mathrm{~d} x} dxdz.
6. 设 u = e a x ( y − z ) a 2 + 1 u=\frac{\mathrm{e}^{a x}(y-z)}{a^2+1} u=a2+1eax(y−z), 而 y = a sin x , z = cos x y=a \sin x, z=\cos x y=asinx,z=cosx, 求 d u d x \frac{\mathrm{d} u}{\mathrm{~d} x} dxdu.
7. 设 z = arctan x y z=\arctan \frac{x}{y} z=arctanyx, 而 x = u + v , y = u − v x=u+v, y=u-v x=u+v,y=u−v, 验证
∂ z ∂ u + ∂ z ∂ v = u − v u 2 + v 2 . \frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=\frac{u-v}{u^2+v^2} . ∂u∂z+∂v∂z=u2+v2u−v.
8. 求下列函数的一阶偏导数(其中 f f f 具有一阶连续偏导数):
(1) u = f ( x 2 − y 2 , e x y ) u=f\left(x^2-y^2, \mathrm{e}^{x y}\right) u=f(x2−y2,exy);
(2) u = f ( x y , y z ) u=f\left(\frac{x}{y}, \frac{y}{z}\right) u=f(yx,zy);
(3) u = f ( x , x y , x y z ) u=f(x, x y, x y z) u=f(x,xy,xyz).
9. 设 z = x y + x F ( u ) z=x y+x F(u) z=xy+xF(u), 而 u = y x , F ( u ) u=\frac{y}{x}, F(u) u=xy,F(u) 为可导函数, 证明
x ∂ z ∂ x + y ∂ z ∂ y = z + x y . x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=z+x y . x∂x∂z+y∂y∂z=z+xy.
10. 设 z = y f ( x 2 − y 2 ) z=\frac{y}{f\left(x^2-y^2\right)} z=f(x2−y2)y, 其中 f ( u ) f(u) f(u) 为可导函数, 验证
1 x ∂ z ∂ x + 1 y ∂ z ∂ y = z y 2 . \frac{1}{x} \frac{\partial z}{\partial x}+\frac{1}{y} \frac{\partial z}{\partial y}=\frac{z}{y^2} . x1∂x∂z+y1∂y∂z=y2z.
11. 设 z = f ( x 2 + y 2 ) z=f\left(x^2+y^2\right) z=f(x2+y2), 其中 f f f 具有二阶导数, 求 ∂ 2 z ∂ x 2 , ∂ 2 z ∂ x ∂ y , ∂ 2 z ∂ y 2 \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y^2} ∂x2∂2z,∂x∂y∂2z,∂y2∂2z.
12. 求下列函数的 ∂ 2 z ∂ x 2 , ∂ 2 z ∂ x ∂ y , ∂ 2 z ∂ y 2 \frac{\partial^2 z}{\partial x^2}, \frac{\partial^2 z}{\partial x \partial y}, \frac{\partial^2 z}{\partial y^2} ∂x2∂2z,∂x∂y∂2z,∂y2∂2z (其中 f f f 具有二阶连续偏导数):
(1) z = f ( x y , y ) z=f(x y, y) z=f(xy,y);
(2) z = f ( x , x y ) z=f\left(x, \frac{x}{y}\right) z=f(x,yx);
(3) z = f ( x y 2 , x 2 y ) z=f\left(x y^2, x^2 y\right) z=f(xy2,x2y);
(4) z = f ( sin x , cos y , e x + y ) z=f\left(\sin x, \cos y, \mathrm{e}^{x+y}\right) z=f(sinx,cosy,ex+y).
13. 设 u = f ( x , y ) u=f(x, y) u=f(x,y) 的所有二阶偏导数连续, 而
x
=
s
−
3
t
2
,
y
=
3
s
+
t
2
,
x=\frac{s-\sqrt{3} t}{2}, \quad y=\frac{\sqrt{3} s+t}{2},
x=2s−3t,y=23s+t,
证明
(
∂
u
∂
x
)
2
+
(
∂
u
∂
y
)
2
=
(
∂
u
∂
s
)
2
+
(
∂
u
∂
t
)
2
及
∂
2
u
∂
x
2
+
∂
2
u
∂
y
2
=
∂
2
u
∂
s
2
+
∂
2
u
∂
t
2
.
\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2=\left(\frac{\partial u}{\partial s}\right)^2+\left(\frac{\partial u}{\partial t}\right)^2 \text { 及 } \frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 u}{\partial s^2}+\frac{\partial^2 u}{\partial t^2} \text {. }
(∂x∂u)2+(∂y∂u)2=(∂s∂u)2+(∂t∂u)2 及 ∂x2∂2u+∂y2∂2u=∂s2∂2u+∂t2∂2u.