【课后习题】高等数学第七版下第九章 多元函数微分法及其应用 第六节 多元函数微分学的几何应用

习题9-6

1. 设 f ( t ) = f 1 ( t ) i + f 2 ( t ) j + f 3 ( t ) k , g ( t ) = g 1 ( t ) i + g 2 ( t ) j + g 3 ( t ) k , lim ⁡ t → t 0 f ( t ) = u \boldsymbol{f}(t)=f_1(t) \boldsymbol{i}+f_2(t) \boldsymbol{j}+f_3(t) \boldsymbol{k}, \boldsymbol{g}(t)=g_1(t) \boldsymbol{i}+g_2(t) \boldsymbol{j}+g_3(t) k, \lim _{t \rightarrow t_0} f(t)=\boldsymbol{u} f(t)=f1(t)i+f2(t)j+f3(t)k,g(t)=g1(t)i+g2(t)j+g3(t)k,limtt0f(t)=u lim ⁡ t → t 0 g ( t ) = v \lim _{t \rightarrow t_0} g(t)=\boldsymbol{v} limtt0g(t)=v

证明
lim ⁡ t → t 0 [ f ( t ) × g ( t ) ] = u × v . \lim _{t \rightarrow t_0}[\boldsymbol{f}(t) \times \boldsymbol{g}(t)]=\boldsymbol{u} \times \boldsymbol{v} . tt0lim[f(t)×g(t)]=u×v.

在这里插入图片描述

2. 下列各题中, r = f ( t ) \boldsymbol{r}=\boldsymbol{f}(t) r=f(t) 是空间中的质点 M M M 在时刻 t t t 的位置, 求质点 M M M 在时刻 t 0 t_0 t0 的速度 向量和加速度向量以及在任意时刻 t t t 的速率.

(1) r = f ( t ) = ( t + 1 ) i + ( t 2 − 1 ) j + 2 t k , t 0 = 1 r=f(t)=(t+1) i+\left(t^2-1\right) j+2 t \boldsymbol{k}, t_0=1 r=f(t)=(t+1)i+(t21)j+2tk,t0=1

(2) r = f ( t ) = ( 2 cos ⁡ t ) i + ( 3 sin ⁡ t ) j + 4 t k , t 0 = π 2 r=f(t)=(2 \cos t) i+(3 \sin t) j+4 t \boldsymbol{k}, t_0=\frac{\pi}{2} r=f(t)=(2cost)i+(3sint)j+4tk,t0=2π;

(3) r = f ( t ) = ( 2 ln ⁡ ( t + 1 ) ) i + t 2 j + 1 2 t 2 k , t 0 = 1 r=\boldsymbol{f}(t)=(2 \ln (t+1)) i+t^2 \boldsymbol{j}+\frac{1}{2} t^2 \boldsymbol{k}, t_0=1 r=f(t)=(2ln(t+1))i+t2j+21t2k,t0=1.

在这里插入图片描述

3. 求曲线 r = f ( t ) = ( t − sin ⁡ t ) i + ( 1 − cos ⁡ t ) j + ( 4 sin ⁡ t 2 ) k r=f(t)=(t-\sin t) i+(1-\cos t) j+\left(4 \sin \frac{t}{2}\right) k r=f(t)=(tsint)i+(1cost)j+(4sin2t)k 在与 t 0 = π 2 t_0=\frac{\pi}{2} t0=2π 相应的点处的切线及法平面方程.

在这里插入图片描述

4. 求曲线 x = t 1 + t , y = 1 + t t , z = t 2 x=\frac{t}{1+t}, y=\frac{1+t}{t}, z=t^2 x=1+tt,y=t1+t,z=t2 在对应于 t 0 = 1 t_0=1 t0=1 的点处的切线及法平面方程.

在这里插入图片描述

5. 求曲线 y 2 = 2 m x , z 2 = m − x y^2=2 m x, z^2=m-x y2=2mx,z2=mx 在点 ( x 0 , y 0 , z 0 ) \left(x_0, y_0, z_0\right) (x0,y0,z0) 处的切线及法平面方程.

在这里插入图片描述

6. 求曲线 { x 2 + y 2 + z 2 − 3 x = 0 , 2 x − 3 y + 5 z − 4 = 0 \left\{\begin{array}{l}x^2+y^2+z^2-3 x=0, \\ 2 x-3 y+5 z-4=0\end{array}\right. {x2+y2+z23x=0,2x3y+5z4=0 在点 ( 1 , 1 , 1 ) (1,1,1) (1,1,1) 处的切线及法平面方程.

在这里插入图片描述

7. 求出曲线 x = t , y = t 2 , z = t 3 x=t, y=t^2, z=t^3 x=t,y=t2,z=t3 上的点, 使在该点的切线平行于平面 x + 2 y + z = 4 x+2 y+z=4 x+2y+z=4.

在这里插入图片描述

8. 求曲面 e z − z + x y = 3 \mathrm{e}^z-z+x y=3 ezz+xy=3 在点 ( 2 , 1 , 0 ) (2,1,0) (2,1,0) 处的切平面及法线方程.

在这里插入图片描述

9. 求曲面 a x 2 + b y 2 + c z 2 = 1 a x^2+b y^2+c z^2=1 ax2+by2+cz2=1 在点 ( x 0 , y 0 , z 0 ) \left(x_0, y_0, z_0\right) (x0,y0,z0) 处的切平面及法线方程.

在这里插入图片描述

10. 求椭球面 x 2 + 2 y 2 + z 2 = 1 x^2+2 y^2+z^2=1 x2+2y2+z2=1 上平行于平面 x − y + 2 z = 0 x-y+2 z=0 xy+2z=0 的切平面方程.

在这里插入图片描述

11. 求旋转椭球面 3 x 2 + y 2 + z 2 = 16 3 x^2+y^2+z^2=16 3x2+y2+z2=16 上点 ( − 1 , − 2 , 3 ) (-1,-2,3) (1,2,3) 处的切平面与 x O y x O y xOy 面的夹角的 余弦.

在这里插入图片描述

12. 试证曲面 x + y + z = a ( a > 0 ) \sqrt{x}+\sqrt{y}+\sqrt{z}=\sqrt{a}(a>0) x +y +z =a (a>0) 上任何点处的切平面在各坐标轴上的截距之和等于 a a a.

在这里插入图片描述

13. 设 u ( t ) 、 v ( t ) \boldsymbol{u}(t) 、 \boldsymbol{v}(t) u(t)v(t) 是可导的向量值函数, 证明:

(1) d d t [ u ( t ) ± v ( t ) ] = u ′ ( t ) ± v ′ ( t ) \frac{\mathrm{d}}{\mathrm{d} t}[\boldsymbol{u}(t) \pm \boldsymbol{v}(t)]=\boldsymbol{u}^{\prime}(t) \pm \boldsymbol{v}^{\prime}(t) dtd[u(t)±v(t)]=u(t)±v(t)

在这里插入图片描述

(2) d d t [ u ( t ) ⋅ v ( t ) ] = u ′ ( t ) ⋅ v ( t ) + u ( t ) ⋅ v ′ ( t ) \frac{\mathrm{d}}{\mathrm{d} t}[\boldsymbol{u}(t) \cdot \boldsymbol{v}(t)]=\boldsymbol{u}^{\prime}(t) \cdot \boldsymbol{v}(t)+\boldsymbol{u}(t) \cdot \boldsymbol{v}^{\prime}(t) dtd[u(t)v(t)]=u(t)v(t)+u(t)v(t);

在这里插入图片描述

(3) d d t [ u ( t ) × v ( t ) ] = u ′ ( t ) × v ( t ) + u ( t ) × v ′ ( t ) \frac{\mathrm{d}}{\mathrm{d} t}[\boldsymbol{u}(t) \times \boldsymbol{v}(t)]=\boldsymbol{u}^{\prime}(t) \times \boldsymbol{v}(t)+\boldsymbol{u}(t) \times \boldsymbol{v}^{\prime}(t) dtd[u(t)×v(t)]=u(t)×v(t)+u(t)×v(t).

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值