习题10-1
1. 设有一平面薄板 (不计其厚度) 占有 x O y x O y xOy 面上的闭区域 D D D, 薄板上分布有面密度为 μ = \mu= μ= μ ( x , y ) \mu(x, y) μ(x,y) 的电荷, 且 μ ( x , y ) \mu(x, y) μ(x,y) 在 D D D 上连续, 试用二重积分表达该薄板上的全部电荷 Q Q Q.
2. 设 I 1 = ∬ D 1 ( x 2 + y 2 ) 3 d σ I_1=\iint_{D_1}\left(x^2+y^2\right)^3 \mathrm{~d} \sigma I1=∬D1(x2+y2)3 dσ, 其中 D 1 = { ( x , y ) ∣ − 1 ⩽ x ⩽ 1 , − 2 ⩽ y ⩽ 2 } D_1=\{(x, y) \mid-1 \leqslant x \leqslant 1,-2 \leqslant y \leqslant 2\} D1={(x,y)∣−1⩽x⩽1,−2⩽y⩽2}; 又
I 2 = ∬ D 2 ( x 2 + y 2 ) 3 d σ , 其中 D 2 = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 2 } . I_2=\iint_{D_2}\left(x^2+y^2\right)^3 \mathrm{~d} \sigma \text {, 其中 } D_2=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 2\} \text {. } I2=∬D2(x2+y2)3 dσ, 其中 D2={(x,y)∣0⩽x⩽1,0⩽y⩽2}.
试利用二重积分的几何意义说明 I 1 I_1 I1 与 I 2 I_2 I2 之间的关系.
3. 利用二重积分定义证明:
(1) ∬ D d σ = σ \iint_D \mathrm{~d} \sigma=\sigma ∬D dσ=σ (其中 σ \sigma σ 为 D D D 的面积);
(2) ∬ D k f ( x , y ) d σ = k ∬ D f ( x , y ) d σ \iint_D k f(x, y) \mathrm{d} \sigma=k \iint_D f(x, y) \mathrm{d} \sigma ∬Dkf(x,y)dσ=k∬Df(x,y)dσ (其中 k k k 为常数);
(3) ∬ D f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ \iint_D f(x, y) \mathrm{d} \sigma=\iint_{D_1} f(x, y) \mathrm{d} \sigma+\iint_{D_2} f(x, y) \mathrm{d} \sigma ∬Df(x,y)dσ=∬D1f(x,y)dσ+∬D2f(x,y)dσ,
其中 D = D 1 ∪ D 2 , D 1 、 D 2 D=D_1 \cup D_2, D_1 、 D_2 D=D1∪D2,D1、D2 为两个无公共内点的闭区域.
4. 试确定积分区域 D D D, 使二重积分 ∬ D ( 1 − 2 x 2 − y 2 ) d x d y \iint_D\left(1-2 x^2-y^2\right) \mathrm{d} x \mathrm{d}y ∬D(1−2x2−y2)dxdy 达到最大值.
5. 根据二重积分的性质, 比较下列积分的大小:
(1) ∬ D ( x + y ) 2 d σ \iint_D(x+y)^2 \mathrm{~d} \sigma ∬D(x+y)2 dσ 与 ∬ D ( x + y ) 3 d σ \iint_D(x+y)^3 \mathrm{~d} \sigma ∬D(x+y)3 dσ, 其中积分区域 D D D 是由 x x x 轴、 y y y 轴与直线 x + y = 1 x+y=1 x+y=1 所 围成;
(2) ∬ D ( x + y ) 2 d σ \iint_D(x+y)^2 \mathrm{~d} \sigma ∬D(x+y)2 dσ 与 ∬ D ( x + y ) 3 d σ \iint_D(x+y)^3 \mathrm{~d} \sigma ∬D(x+y)3 dσ, 其中积分区域 D D D 是由圆周 ( x − 2 ) 2 + ( y − 1 ) 2 = 2 (x-2)^2+(y-1)^2=2 (x−2)2+(y−1)2=2 所 围成;
(3) ∬ D ln ( x + y ) d σ \iint_D \ln (x+y) \mathrm{d} \sigma ∬Dln(x+y)dσ 与 ∬ D [ ln ( x + y ) ] 2 d σ \iint_D[\ln (x+y)]^2 \mathrm{~d} \sigma ∬D[ln(x+y)]2 dσ, 其中 D D D 是三角形闭区域, 三顶点分别为 ( 1 , 0 ) (1,0) (1,0), ( 1 , 1 ) , ( 2 , 0 ) (1,1),(2,0) (1,1),(2,0);
(4) ∬ D ln ( x + y ) d σ \iint_D \ln (x+y) \mathrm{d} \sigma ∬Dln(x+y)dσ 与 ∬ D [ ln ( x + y ) ] 2 d σ \iint_D[\ln (x+y)]^2 \mathrm{~d} \sigma ∬D[ln(x+y)]2 dσ, 其中 D = { ( x , y ) ∣ 3 ⩽ x ⩽ 5 , 0 ⩽ y ⩽ 1 } D=\{(x, y) \mid 3 \leqslant x \leqslant 5,0 \leqslant y \leqslant 1\} D={(x,y)∣3⩽x⩽5,0⩽y⩽1}.
6. 利用二重积分的性质估计下列积分的值:
(1) I = ∬ D x y ( x + y ) d σ I=\iint_D x y(x+y) \mathrm{d} \sigma I=∬Dxy(x+y)dσ, 其中 D = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 1 } D=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\} D={(x,y)∣0⩽x⩽1,0⩽y⩽1};
(2) I = ∬ D sin 2 x sin 2 y d σ I=\iint_D \sin ^2 x \sin ^2 y \mathrm{~d} \sigma I=∬Dsin2xsin2y dσ, 其中 D = { ( x , y ) ∣ 0 ⩽ x ⩽ π , 0 ⩽ y ⩽ π } D=\{(x, y) \mid 0 \leqslant x \leqslant \pi, 0 \leqslant y \leqslant \pi\} D={(x,y)∣0⩽x⩽π,0⩽y⩽π};
(3) I = ∬ D ( x + y + 1 ) d σ I=\iint_D(x+y+1) \mathrm{d} \sigma I=∬D(x+y+1)dσ, 其中 D = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 2 } D=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 2\} D={(x,y)∣0⩽x⩽1,0⩽y⩽2};
(4) I = ∬ D ( x 2 + 4 y 2 + 9 ) d σ I=\iint_D\left(x^2+4 y^2+9\right) \mathrm{d} \sigma I=∬D(x2+4y2+9)dσ, 其中 D = { ( x , y ) ∣ x 2 + y 2 ⩽ 4 } D=\left\{(x, y) \mid x^2+y^2 \leqslant 4\right\} D={(x,y)∣x2+y2⩽4}.