【课后习题】高等数学第七版下第十章 重积分 第一节 二重积分的概念与性质

文章包含了多个关于二重积分的问题,涉及电荷总和的计算、积分的几何意义解释、积分性质的证明以及特定区域内积分值的比较。其中,薄板电荷的总和通过二重积分表达,积分的几何意义用于比较不同区域的积分值,还讨论了常数倍积、区域分割对积分的影响,以及特定函数积分的最大值问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

习题10-1

1. 设有一平面薄板 (不计其厚度) 占有 x O y x O y xOy 面上的闭区域 D D D, 薄板上分布有面密度为 μ = \mu= μ= μ ( x , y ) \mu(x, y) μ(x,y) 的电荷, 且 μ ( x , y ) \mu(x, y) μ(x,y) D D D 上连续, 试用二重积分表达该薄板上的全部电荷 Q Q Q.

在这里插入图片描述

2. 设 I 1 = ∬ D 1 ( x 2 + y 2 ) 3   d σ I_1=\iint_{D_1}\left(x^2+y^2\right)^3 \mathrm{~d} \sigma I1=D1(x2+y2)3 dσ, 其中 D 1 = { ( x , y ) ∣ − 1 ⩽ x ⩽ 1 , − 2 ⩽ y ⩽ 2 } D_1=\{(x, y) \mid-1 \leqslant x \leqslant 1,-2 \leqslant y \leqslant 2\} D1={(x,y)1x1,2y2}; 又

I 2 = ∬ D 2 ( x 2 + y 2 ) 3   d σ , 其中  D 2 = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 2 } .  I_2=\iint_{D_2}\left(x^2+y^2\right)^3 \mathrm{~d} \sigma \text {, 其中 } D_2=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 2\} \text {. } I2=D2(x2+y2)3 dσ其中 D2={(x,y)0x1,0y2}

试利用二重积分的几何意义说明 I 1 I_1 I1 I 2 I_2 I2 之间的关系.

在这里插入图片描述

在这里插入图片描述

3. 利用二重积分定义证明:

(1) ∬ D   d σ = σ \iint_D \mathrm{~d} \sigma=\sigma D dσ=σ (其中 σ \sigma σ D D D 的面积);

(2) ∬ D k f ( x , y ) d σ = k ∬ D f ( x , y ) d σ \iint_D k f(x, y) \mathrm{d} \sigma=k \iint_D f(x, y) \mathrm{d} \sigma Dkf(x,y)dσ=kDf(x,y)dσ (其中 k k k 为常数);

在这里插入图片描述

(3) ∬ D f ( x , y ) d σ = ∬ D 1 f ( x , y ) d σ + ∬ D 2 f ( x , y ) d σ \iint_D f(x, y) \mathrm{d} \sigma=\iint_{D_1} f(x, y) \mathrm{d} \sigma+\iint_{D_2} f(x, y) \mathrm{d} \sigma Df(x,y)dσ=D1f(x,y)dσ+D2f(x,y)dσ,

其中 D = D 1 ∪ D 2 , D 1 、 D 2 D=D_1 \cup D_2, D_1 、 D_2 D=D1D2,D1D2 为两个无公共内点的闭区域.

在这里插入图片描述

4. 试确定积分区域 D D D, 使二重积分 ∬ D ( 1 − 2 x 2 − y 2 ) d x d y \iint_D\left(1-2 x^2-y^2\right) \mathrm{d} x \mathrm{d}y D(12x2y2)dxdy 达到最大值.

在这里插入图片描述

5. 根据二重积分的性质, 比较下列积分的大小:

(1) ∬ D ( x + y ) 2   d σ \iint_D(x+y)^2 \mathrm{~d} \sigma D(x+y)2 dσ ∬ D ( x + y ) 3   d σ \iint_D(x+y)^3 \mathrm{~d} \sigma D(x+y)3 dσ, 其中积分区域 D D D 是由 x x x 轴、 y y y 轴与直线 x + y = 1 x+y=1 x+y=1 所 围成;

(2) ∬ D ( x + y ) 2   d σ \iint_D(x+y)^2 \mathrm{~d} \sigma D(x+y)2 dσ ∬ D ( x + y ) 3   d σ \iint_D(x+y)^3 \mathrm{~d} \sigma D(x+y)3 dσ, 其中积分区域 D D D 是由圆周 ( x − 2 ) 2 + ( y − 1 ) 2 = 2 (x-2)^2+(y-1)^2=2 (x2)2+(y1)2=2 所 围成;

在这里插入图片描述

(3) ∬ D ln ⁡ ( x + y ) d σ \iint_D \ln (x+y) \mathrm{d} \sigma Dln(x+y)dσ ∬ D [ ln ⁡ ( x + y ) ] 2   d σ \iint_D[\ln (x+y)]^2 \mathrm{~d} \sigma D[ln(x+y)]2 dσ, 其中 D D D 是三角形闭区域, 三顶点分别为 ( 1 , 0 ) (1,0) (1,0), ( 1 , 1 ) , ( 2 , 0 ) (1,1),(2,0) (1,1),(2,0);

(4) ∬ D ln ⁡ ( x + y ) d σ \iint_D \ln (x+y) \mathrm{d} \sigma Dln(x+y)dσ ∬ D [ ln ⁡ ( x + y ) ] 2   d σ \iint_D[\ln (x+y)]^2 \mathrm{~d} \sigma D[ln(x+y)]2 dσ, 其中 D = { ( x , y ) ∣ 3 ⩽ x ⩽ 5 , 0 ⩽ y ⩽ 1 } D=\{(x, y) \mid 3 \leqslant x \leqslant 5,0 \leqslant y \leqslant 1\} D={(x,y)3x5,0y1}.

在这里插入图片描述

6. 利用二重积分的性质估计下列积分的值:

(1) I = ∬ D x y ( x + y ) d σ I=\iint_D x y(x+y) \mathrm{d} \sigma I=Dxy(x+y)dσ, 其中 D = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 1 } D=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\} D={(x,y)0x1,0y1};

(2) I = ∬ D sin ⁡ 2 x sin ⁡ 2 y   d σ I=\iint_D \sin ^2 x \sin ^2 y \mathrm{~d} \sigma I=Dsin2xsin2y dσ, 其中 D = { ( x , y ) ∣ 0 ⩽ x ⩽ π , 0 ⩽ y ⩽ π } D=\{(x, y) \mid 0 \leqslant x \leqslant \pi, 0 \leqslant y \leqslant \pi\} D={(x,y)0xπ,0yπ};

(3) I = ∬ D ( x + y + 1 ) d σ I=\iint_D(x+y+1) \mathrm{d} \sigma I=D(x+y+1)dσ, 其中 D = { ( x , y ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 2 } D=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 2\} D={(x,y)0x1,0y2};

(4) I = ∬ D ( x 2 + 4 y 2 + 9 ) d σ I=\iint_D\left(x^2+4 y^2+9\right) \mathrm{d} \sigma I=D(x2+4y2+9)dσ, 其中 D = { ( x , y ) ∣ x 2 + y 2 ⩽ 4 } D=\left\{(x, y) \mid x^2+y^2 \leqslant 4\right\} D={(x,y)x2+y24}.

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值