【课后习题】高等数学第七版下第十章 重积分 第三节 三重积分

这篇文章涉及多个三维空间中的三重积分计算问题,包括不同形状的闭区域(如双曲抛物面、球面、柱面等)内的积分。题目还涵盖了利用积分求解物体质量、体积以及密度分布的问题,以及如何通过坐标变换简化积分计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

习题10-3

1. 化三重积分 I = ∭ Ω f ( x , y , z ) d x   d y   d z I=\iiint_{\Omega} f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z I=Ωf(x,y,z)dx dy dz 为三次积分, 其中积分区域 Ω \Omega Ω 分别是

(1) 由双曲抛物面 x y = z x y=z xy=z 及平面 x + y − 1 = 0 , z = 0 x+y-1=0, z=0 x+y1=0,z=0 所围成的闭区域;

在这里插入图片描述

(2) 由曲面 z = x 2 + y 2 z=x^2+y^2 z=x2+y2 及平面 z = 1 z=1 z=1 所围成的闭区域;

在这里插入图片描述

在这里插入图片描述

(3) 由曲面 z = x 2 + 2 y 2 z=x^2+2 y^2 z=x2+2y2 z = 2 − x 2 z=2-x^2 z=2x2 所围成的闭区域;

在这里插入图片描述

在这里插入图片描述

(4) 由曲面 c z = x y ( c > 0 ) , x 2 a 2 + y 2 b 2 = 1 , z = 0 c z=x y(c>0), \frac{x^2}{a^2}+\frac{y^2}{b^2}=1, z=0 cz=xy(c>0),a2x2+b2y2=1,z=0 所围成的在第一卦限内的闭区域.

在这里插入图片描述

在这里插入图片描述

2. 设有一物体, 占有空间闭区域 Ω = { ( x , y , z ) ∣ 0 ⩽ x ⩽ 1 , 0 ⩽ y ⩽ 1 , 0 ⩽ z ⩽ 1 } \Omega=\{(x, y, z) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1,0 \leqslant z \leqslant 1\} Ω={(x,y,z)0x1,0y1,0z1}, 在点 ( x , y , z ) (x, y, z) (x,y,z) 处的密度为 ρ ( x , y , z ) = x + y + z \rho(x, y, z)=x+y+z ρ(x,y,z)=x+y+z, 计算该物体的质量.

在这里插入图片描述

3. 如果三重积分 ∭ Ω f ( x , y , z ) d x   d y   d z \iiint_\Omega f(x, y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z Ωf(x,y,z)dx dy dz 的被积函数 f ( x , y , z ) f(x, y, z) f(x,y,z) 是三个函数 f 1 ( x ) f 2 ( y ) f 3 ( z ) f_1(x) f_2(y) f_3(z) f1(x)f2(y)f3(z)的乘积,即 f ( x , y , z ) = f 1 ( x ) f 2 ( y ) f 3 ( z ) f(x, y, z)=f_1(x) f_2(y) f_3(z) f(x,y,z)=f1(x)f2(y)f3(z), 积分区域 Ω = { ( x , y , z ) ∣ a ⩽ x ⩽ b , c ⩽ y ⩽ d , l ⩽ z ⩽ m } \Omega=\{(x, y, z) \mid a \leqslant x \leqslant b, c \leqslant y \leqslant d, l \leqslant z \leqslant m\} Ω={(x,y,z)axb,cyd,lzm}, 证明这个三重积分等于三个单积分的乘积, 即

∭ Ω f 1 ( x ) f 2 ( y ) f 3 ( z ) d x   d y   d z = ∫ a b f 1 ( x ) d x ∫ c d f 2 ( y ) d y ∫ l m f 3 ( z ) d z . \iiint_{\Omega} f_1(x) f_2(y) f_3(z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z=\int_a^b f_1(x) \mathrm{d} x \int_c^d f_2(y) \mathrm{d} y \int_l^m f_3(z) \mathrm{d} z . Ωf1(x)f2(y)f3(z)dx dy dz=abf1(x)dxcdf2(y)dylmf3(z)dz.

在这里插入图片描述

4. 计算 ∭ Ω x y 2 z 3   d x   d y   d z \iiint_\Omega x y^2 z^3 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z Ωxy2z3 dx dy dz, 其中 Ω \Omega Ω 是由曲面 z = x y z=x y z=xy 与平面 y = x , x = 1 y=x, x=1 y=x,x=1 z = 0 z=0 z=0 所围成的闭区域.

在这里插入图片描述

在这里插入图片描述

5. 计算 ∭ Ω d x   d y   d z ( 1 + x + y + z ) 3 \iiint_{\Omega} \frac{\mathrm{d} x \mathrm{~d} y \mathrm{~d} z}{(1+x+y+z)^3} Ω(1+x+y+z)3dx dy dz, 其中 Ω \Omega Ω 为平面 x = 0 , y = 0 , z = 0 , x + y + z = 1 x=0, y=0, z=0, x+y+z=1 x=0,y=0,z=0,x+y+z=1 所围成的四面体.

在这里插入图片描述

在这里插入图片描述

6. 计算 ∭ Ω x y z   d x   d y   d z \iiint_{\Omega} x y z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z Ωxyz dx dy dz, 其中 Ω \Omega Ω 为球面 x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 x2+y2+z2=1 及三个坐标面所围成的在第一卦限内的闭区域.

在这里插入图片描述

7. 计算 ∭ Ω x z   d x   d y   d z \iiint_{\Omega} x z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z Ωxz dx dy dz, 其中 Ω \Omega Ω 是由平面 z = 0 , z = y , y = 1 z=0, z=y, y=1 z=0,z=y,y=1 以及抛物柱面 y = x 2 y=x^2 y=x2 所围成的闭区域.

在这里插入图片描述

8. 计算 ∭ Ω z   d x   d y   d z \iiint_{\Omega} z \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z Ωz dx dy dz, 其中 Ω \Omega Ω 是由锥面 z = h R x 2 + y 2 z=\frac{h}{R} \sqrt{x^2+y^2} z=Rhx2+y2 与平面 z = h ( R > 0 , h > 0 ) z=h(R>0, h>0) z=h(R>0,h>0) 所围成的闭区域.

在这里插入图片描述

在这里插入图片描述

9. 利用柱面坐标计算下列三重积分:

(1) ∭ Ω z   d v \iiint_{\Omega} z \mathrm{~d} v Ωz dv, 其中 Ω \Omega Ω 是由曲面 z = 2 − x 2 − y 2 z=\sqrt{2-x^2-y^2} z=2x2y2 z = x 2 + y 2 z=x^2+y^2 z=x2+y2 所围成的闭区域;

在这里插入图片描述

在这里插入图片描述

(2) ∭ Ω ( x 2 + y 2 ) d v \iiint_{\Omega}\left(x^2+y^2\right) \mathrm{d} v Ω(x2+y2)dv, 其中 Ω \Omega Ω 是由曲面 x 2 + y 2 = 2 z x^2+y^2=2 z x2+y2=2z 及平面 z = 2 z=2 z=2 所围成的闭区域.

在这里插入图片描述

10. 利用球面坐标计算下列三重积分:

(1) ∭ Ω ( x 2 + y 2 + z 2 ) d v \iiint_{\Omega}\left(x^2+y^2+z^2\right) \mathrm{d} v Ω(x2+y2+z2)dv, 其中 Ω \Omega Ω 是由球面 x 2 + y 2 + z 2 = 1 x^2+y^2+z^2=1 x2+y2+z2=1 所围成的闭区域;

在这里插入图片描述

(2) ∭ Ω z   d v \iiint_{\Omega} z \mathrm{~d} v Ωz dv, 其中闭区域 Ω \Omega Ω 由不等式 x 2 + y 2 + ( z − a ) 2 ⩽ a 2 , x 2 + y 2 ⩽ z 2 x^2+y^2+(z-a)^2 \leqslant a^2, x^2+y^2 \leqslant z^2 x2+y2+(za)2a2,x2+y2z2 所确定.

在这里插入图片描述

在这里插入图片描述

11. 选用适当的坐标计算下列三重积分:

(1) ∭ Ω x y   d v \iiint_{\Omega} x y \mathrm{~d} v Ωxy dv, 其中 Ω \Omega Ω 为柱面 x 2 + y 2 = 1 x^2+y^2=1 x2+y2=1 及平面 z = 1 , z = 0 , x = 0 , y = 0 z=1, z=0, x=0, y=0 z=1,z=0,x=0,y=0 所围成的在第一卦限 内的闭区域;

在这里插入图片描述

(2) ∭ Ω x 2 + y 2 + z 2   d v \iiint_{\Omega} \sqrt{x^2+y^2+z^2} \mathrm{~d} v Ωx2+y2+z2  dv, 其中 Ω \Omega Ω 是由球面 x 2 + y 2 + z 2 = z x^2+y^2+z^2=z x2+y2+z2=z 所围成的闭区域;

在这里插入图片描述

在这里插入图片描述

(3) ∭ Ω ( x 2 + y 2 ) d v \iiint_{\Omega}\left(x^2+y^2\right) \mathrm{d} v Ω(x2+y2)dv, 其中 Ω \Omega Ω 是由曲面 4 z 2 = 25 ( x 2 + y 2 ) 4 z^2=25\left(x^2+y^2\right) 4z2=25(x2+y2) 及平面 z = 5 z=5 z=5 所围成的闭区域;

在这里插入图片描述

在这里插入图片描述

(4) ∭ Ω ( x 2 + y 2 ) d v \iiint_\Omega\left(x^2+y^2\right) \mathrm{d} v Ω(x2+y2)dv, 其中闭区域 Ω \Omega Ω 由不等式 0 < a ⩽ x 2 + y 2 + z 2 ⩽ A , z ⩾ 0 0<a \leqslant \sqrt{x^2+y^2+z^2} \leqslant A, z \geqslant 0 0<ax2+y2+z2 A,z0 所确定.

在这里插入图片描述

12. 利用三重积分计算下列由曲面所围成的立体的体积:

(1) z = 6 − x 2 − y 2 z=6-x^2-y^2 z=6x2y2 z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 ;

在这里插入图片描述

(2) x 2 + y 2 + z 2 = 2 a z ( a > 0 ) x^2+y^2+z^2=2 a z(a>0) x2+y2+z2=2az(a>0) x 2 + y 2 = z 2 x^2+y^2=z^2 x2+y2=z2 (含有 z z z 轴的部分);

在这里插入图片描述

在这里插入图片描述

(3) z = x 2 + y 2 z=\sqrt{x^2+y^2} z=x2+y2 z = x 2 + y 2 z=x^2+y^2 z=x2+y2;

在这里插入图片描述

在这里插入图片描述

(4) z = 5 − x 2 − y 2 z=\sqrt{5-x^2-y^2} z=5x2y2 x 2 + y 2 = 4 z x^2+y^2=4 z x2+y2=4z.

在这里插入图片描述

在这里插入图片描述

13. 求球体 r ⩽ a r \leqslant a ra 位于锥面 φ = π 3 \varphi=\frac{\pi}{3} φ=3π φ = 2 3 π \varphi=\frac{2}{3} \pi φ=32π 之间的部分的体积.

在这里插入图片描述

14. 求上、下分别为球面 x 2 + y 2 + z 2 = 2 x^2+y^2+z^2=2 x2+y2+z2=2 和抛物面 z = x 2 + y 2 z=x^2+y^2 z=x2+y2 所围立体的体积.

在这里插入图片描述

15. 球心在原点、半径为 R R R 的球, 在其上任意一点的密度的大小与这点到球心的距离成正比,求这球的质量.

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Ding Jiaxiong

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值