习题11-3
1. 计算下列曲线积分, 并验证格林公式的正确性:
(1) ∮ L ( 2 x y − x 2 ) d x + ( x + y 2 ) d y \oint_L\left(2 x y-x^2\right) \mathrm{d} x+\left(x+y^2\right) \mathrm{d} y ∮L(2xy−x2)dx+(x+y2)dy, 其中 L L L 是由抛物线 y = x 2 y=x^2 y=x2 和 y 2 = x y^2=x y2=x 所围成的区域的正向边界曲线;
(2) ∮ L ( x 2 − x y 3 ) d x + ( y 2 − 2 x y ) d y \oint_L\left(x^2-x y^3\right) \mathrm{d} x+\left(y^2-2 x y\right) \mathrm{d} y ∮L(x2−xy3)dx+(y2−2xy)dy, 其中 L L L 是四个顶点分别为 ( 0 , 0 ) 、 ( 2 , 0 ) 、 ( 2 , 2 ) (0,0) 、(2,0) 、(2,2) (0,0)、(2,0)、(2,2) 和 ( 0 , 2 ) (0,2) (0,2) 的正方形区域的正向边界.
2. 利用曲线积分, 求下列曲线所围成的图形的面积:
(1) 星形线 x = a cos 3 t , y = a sin 3 t x=a \cos ^3 t, y=a \sin ^3 t x=acos3t,y=asin3t;
(2) 椭圆 9 x 2 + 16 y 2 = 144 9 x^2+16 y^2=144 9x2+16y2=144;
(3) 圆 x 2 + y 2 = 2 a x x^2+y^2=2 a x x2+y2=2ax.
3. 计算曲线积分 ∮ L y d x − x d y 2 ( x 2 + y 2 ) \oint_L \frac{y \mathrm{~d} x-x \mathrm{~d} y}{2\left(x^2+y^2\right)} ∮L2(x2+y2)y dx−x dy, 其中 L L L 为圆周 ( x − 1 ) 2 + y 2 = 2 , L (x-1)^2+y^2=2, L (x−1)2+y2=2,L 的方向为逆时针方向.
4. 确定闭曲线 C C C, 使曲线积分 ∮ C ( x + y 3 3 ) d x + ( y + x − 2 3 x 3 ) d y \oint_C\left(x+\frac{y^3}{3}\right) \mathrm{d} x+\left(y+x-\frac{2}{3} x^3\right) \mathrm{d} y ∮C(x+3y3)dx+(y+x−32x3)dy 达到最大值.
5. 设 n n n 边形的 n n n 个顶点按逆时针方向依次为 M 1 ( x 1 , y 1 ) , M 2 ( x 2 , y 2 ) , ⋯ , M n ( x n , y n ) M_1\left(x_1, y_1\right), M_2\left(x_2, y_2\right), \cdots, M_n\left(x_n, y_n\right) M1(x1,y1),M2(x2,y2),⋯,Mn(xn,yn). 试 利用曲线积分证明此 n n n 边形的面积为
A = 1 2 [ ( x 1 y 2 − x 2 y 1 ) + ( x 2 y 3 − x 3 y 2 ) + ⋯ + ( x n − 1 y n − x n y n − 1 ) + ( x n y 1 − x 1 y n ) ] . A=\frac{1}{2}\left[\left(x_1 y_2-x_2 y_1\right)+\left(x_2 y_3-x_3 y_2\right)+\cdots+\left(x_{n-1} y_n-x_n y_{n-1}\right)+\left(x_n y_1-x_1 y_n\right)\right] . A=21[(x1y2−x2y1)+(x2y3−x3y2)+⋯+(xn−1yn−xnyn−1)+(xny1−x1yn)].
6. 证明下列曲线积分在整个 x O y x O y xOy 面内与路径无关,并计算积分值:
(1) ∫ ( 1 , 1 ) ( 2 , 3 ) ( x + y ) d x + ( x − y ) d y \int_{(1,1)}^{(2,3)}(x+y) \mathrm{d} x+(x-y) \mathrm{d} y ∫(1,1)(2,3)(x+y)dx+(x−y)dy;
(2) ∫ ( 1 , 2 ) ( 3 , 4 ) ( 6 x y 2 − y 3 ) d x + ( 6 x 2 y − 3 x y 2 ) d y \int_{(1,2)}^{(3,4)}\left(6 x y^2-y^3\right) \mathrm{d} x+\left(6 x^2 y-3 x y^2\right) \mathrm{d} y ∫(1,2)(3,4)(6xy2−y3)dx+(6x2y−3xy2)dy;
(3) ∫ ( 1 , 0 ) ( 2 , 1 ) ( 2 x y − y 4 + 3 ) d x + ( x 2 − 4 x y 3 ) d y \int_{(1,0)}^{(2,1)}\left(2 x y-y^4+3\right) \mathrm{d} x+\left(x^2-4 x y^3\right) \mathrm{d} y ∫(1,0)(2,1)(2xy−y4+3)dx+(x2−4xy3)dy.
7. 利用格林公式, 计算下列曲线积分:
(1) ∮ L ( 2 x − y + 4 ) d x + ( 5 y + 3 x − 6 ) d y \oint_L(2 x-y+4) \mathrm{d} x+(5 y+3 x-6) \mathrm{d} y ∮L(2x−y+4)dx+(5y+3x−6)dy, 其中 L L L 是三顶点分别为 ( 0 , 0 ) 、 ( 3 , 0 ) (0,0) 、(3,0) (0,0)、(3,0) 和 ( 3 , 2 ) (3,2) (3,2) 的 三角形正向边界;
(2) ∮ L ( x 2 y cos x + 2 x y sin x − y 2 e x ) d x + ( x 2 sin x − 2 y e x ) d y \oint_L\left(x^2 y \cos x+2 x y \sin x-y^2 \mathrm{e}^x\right) \mathrm{d} x+\left(x^2 \sin x-2 y \mathrm{e}^x\right) \mathrm{d} y ∮L(x2ycosx+2xysinx−y2ex)dx+(x2sinx−2yex)dy, 其中 L L L 为正向星形线 x 2 3 + y 2 3 = a 2 3 ( a > 0 ) ; x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}(a>0) ; x32+y32=a32(a>0);
(3) ∫ L ( 2 x y 3 − y 2 cos x ) d x + ( 1 − 2 y sin x + 3 x 2 y 2 ) d y \int_L\left(2 x y^3-y^2 \cos x\right) \mathrm{d} x+\left(1-2 y \sin x+3 x^2 y^2\right) \mathrm{d} y ∫L(2xy3−y2cosx)dx+(1−2ysinx+3x2y2)dy, 其中 L L L 为在抛物线 2 x = π y 2 2 x=\pi y^2 2x=πy2 上由点 ( 0 , 0 ) (0,0) (0,0) 到 ( π 2 , 1 ) \left(\frac{\pi}{2}, 1\right) (2π,1) 的一段弧;
(4) ∫ L ( x 2 − y ) d x − ( x + sin 2 y ) d y \int_L\left(x^2-y\right) \mathrm{d} x-\left(x+\sin ^2 y\right) \mathrm{d} y ∫L(x2−y)dx−(x+sin2y)dy, 其中 L L L 是在圆周 y = 2 x − x 2 y=\sqrt{2 x-x^2} y=2x−x2 上由点 ( 0 , 0 ) (0,0) (0,0) 到点 ( 1 , 1 ) (1,1) (1,1) 的一段弧.
8. 验证下列 P ( x , y ) d x + Q ( x , y ) d y P(x, y) \mathrm{d} x+Q(x, y) \mathrm{d} y P(x,y)dx+Q(x,y)dy 在整个 x O y x O y xOy 平面内是某一函数 u ( x , y ) u(x, y) u(x,y) 的全微分, 并求这样的一个 u ( x , y ) u(x, y) u(x,y) :
(1) ( x + 2 y ) d x + ( 2 x + y ) d y (x+2 y) \mathrm{d} x+(2 x+y) \mathrm{d} y (x+2y)dx+(2x+y)dy;
(2) 2 x y d x + x 2 d y 2 x y \mathrm{~d} x+x^2 \mathrm{~d} y 2xy dx+x2 dy;
(3) 4 sin x sin 3 y cos x d x − 3 cos 3 y cos 2 x d y 4 \sin x \sin 3 y \cos x \mathrm{~d} x-3 \cos 3 y \cos 2 x \mathrm{~d} y 4sinxsin3ycosx dx−3cos3ycos2x dy;
(4) ( 3 x 2 y + 8 x y 2 ) d x + ( x 3 + 8 x 2 y + 12 y e y ) d y \left(3 x^2 y+8 x y^2\right) \mathrm{d} x+\left(x^3+8 x^2 y+12 y \mathrm{e}^y\right) \mathrm{d} y (3x2y+8xy2)dx+(x3+8x2y+12yey)dy;
(5) ( 2 x cos y + y 2 cos x ) d x + ( 2 y sin x − x 2 sin y ) d y \left(2 x \cos y+y^2 \cos x\right) \mathrm{d} x+\left(2 y \sin x-x^2 \sin y\right) \mathrm{d} y (2xcosy+y2cosx)dx+(2ysinx−x2siny)dy.
9. 设有一变力在坐标轴上的投影为 X = x 2 + y 2 , Y = 2 x y − 8 X=x^2+y^2, Y=2 x y-8 X=x2+y2,Y=2xy−8, 这变力确定了一个力场. 证明质点在此场内移动时, 场力所作的功与路径无关.
10. 判别下列方程中哪些是全微分方程? 对于全微分方程, 求出它的通解.
(1) ( 3 x 2 + 6 x y 2 ) d x + ( 6 x 2 y + 4 y 2 ) d y = 0 \left(3 x^2+6 x y^2\right) \mathrm{d} x+\left(6 x^2 y+4 y^2\right) \mathrm{d} y=0 (3x2+6xy2)dx+(6x2y+4y2)dy=0;
(2) ( a 2 − 2 x y − y 2 ) d x − ( x + y ) 2 d y = 0 \left(a^2-2 x y-y^2\right) \mathrm{d} x-(x+y)^2 \mathrm{~d} y=0 (a2−2xy−y2)dx−(x+y)2 dy=0 ( a a a 为常数);
(3) e y d x + ( x e y − 2 y ) d y = 0 \mathrm{e}^y \mathrm{~d} x+\left(x \mathrm{e}^y-2 y\right) \mathrm{d} y=0 ey dx+(xey−2y)dy=0;
(4) ( x cos y + cos x ) y ′ − y sin x + sin y = 0 (x \cos y+\cos x) y^{\prime}-y \sin x+\sin y=0 (xcosy+cosx)y′−ysinx+siny=0;
(5) ( x 2 − y ) d x − x d y = 0 \left(x^2-y\right) \mathrm{d} x-x \mathrm{~d} y=0 (x2−y)dx−x dy=0;
(6) y ( x − 2 y ) d x − x 2 d y = 0 y(x-2 y) \mathrm{d} x-x^2 \mathrm{~d} y=0 y(x−2y)dx−x2 dy=0;
(7) ( 1 + e 2 θ ) d ρ + 2 ρ e 2 θ d θ = 0 \left(1+\mathrm{e}^{2 \theta}\right) \mathrm{d} \rho+2 \rho \mathrm{e}^{2 \theta} \mathrm{d} \theta=0 (1+e2θ)dρ+2ρe2θdθ=0;
(8) ( x 2 + y 2 ) d x + x y d y = 0 \left(x^2+y^2\right) \mathrm{d} x+x y \mathrm{~d} y=0 (x2+y2)dx+xy dy=0.