机器学习与深度学习
文章平均质量分 84
MrBamboo2000
和光同尘,湛兮或存
展开
-
Pytorch搭建CNN进行图像分类
PyTorch是一个开源的Python机器学习库,2017年1月,由Facebook人工智能研究院(FAIR)基于Torch推出。最近抽出时间来亲身实践一下用PyTorch搭建一个简单的卷积神经网络进行图像分类。全流程主要分为数据读取与处理、训练和测试三个部分。原创 2022-04-20 15:47:12 · 11270 阅读 · 5 评论 -
机器学习实战(2)——支持向量机解决手写体数字识别问题
支持向量分类器上回我们用线性分类器找到的是某一种可能的分类方式,这一回的支持向量机则是用来在这些可能的线性分类器寻找一个最优的分类方式,而寻找最优的依据就是“支持向量”,对这个模型的思想我们可以简单的理解为:以二分类为例找一条直线(一个超平面)使得两边的数据点到它的距离之和最短。当然我上面的阐述并不准确,关于支持向量机严格的理解与介绍可以见这位博主的文章:https://blog.csdn.net/sinat_20177327/article/details/79729551数据读取与分析这次采用原创 2021-03-22 09:23:59 · 3342 阅读 · 0 评论 -
机器学习实战(1)——线性分类器+Logistic回归解决良/恶性乳腺癌肿瘤预测问题
线性分类器+Logistic回归解决良/恶性乳腺癌肿瘤预测问题理论分析线性分类器Logistic回归数据分析代码分析导入数据分割数据完整代码理论分析线性分类器Logistic回归数据分析代码分析导入数据分割数据完整代码...原创 2021-03-15 09:19:17 · 1832 阅读 · 4 评论 -
卷积神经网络CNN的四大关键技术(个人理解)
本文仅是自己的理解与认识,有不正确、不严谨之处欢迎大佬们批评指正!今天在学习卷积神经网络时发现这样一句话:卷积神经网络使用局部连接、权值共享、多卷积核以及池化四个关键技术,教材上对这四大技术的讲解也不是很明了,查阅资料后大致有了自己的理解的认识,在此记录一下。除了多卷积核,其他三大关键技术的目的都是为了减少参数量,简化模型的训练同时防止模型过拟合,只不过采取的手段和依靠的原理不同。而多卷积核则是为了让特征提取的更加充分,提高模型的准确度。首先,局部连接是输入层到隐层之间的参数简化。受到生物学的启发,每原创 2020-11-07 16:05:57 · 6274 阅读 · 0 评论